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SUMMARY 

Five  y e a r s  ago, m e t a l  fa t igue was considered by many to be 

a n  unimportant  p rob lem in the design of space  vehic le  s y s t e m s .  

Within this per iod ,  potential p roblems w e r e  reviewed per iod-  

ica l ly  a s  exper ience  i n  the operat ion of t hese  vehic les  i nc reased .  

No fatigue design c r i t e r i a  have yet been fo rma l ly  documented f o r  

this  new c l a s s  of vehic les .  Now, t rends  in  fu ture  space  s y s t e m  

design,  in addition to some  c u r r e n t  experience,  dictate that  the 

p rob lem can no longer  be neglected.  This  r e p o r t  is intended to 

supply background information useful in the design of space  

vehicle  sys t em s t r u c t u r e s .  

The r e p o r t  p r e s e n t s  a definition of the fat igue p rob lem as  i t  

r e l a t e s  to the s t rength  of s t r u c t u r e .  

knowledge i n  designing to prevent  the o c c u r r e n c e  of this unde- 

s i r a b l e  phenomenon. 

fo r  u s e  in  design,  t e s t ,  and ana lys i s  a r e  a l so  reviewed.  

S e v e r a l  appendixes  appear  a t  the end of the  r e p o r t .  

pose  is  to s e r v e  as  a checkl i s t  for  the des igner  on those a s p e c t s  

A rev iew of the appendixes will a l so  r e v e a l  those a r e a s  i n  which 

of the p rob lem that a r e  often neglected o r  a r e  not wel l  known. 

addi t ional  r e s e a r c h  is requi red .  

It b r ie f ly  rev iews  p r e s e n t  

Cur ren t  evaluation methods  and guides 

The i r  pu r -  



. s t rength  of s t ruc tu re  will occu r  if no concerted effort  i s  made to apply t e s t  
loads and environments  in  a rea l i s t ic  manner .  

F u r t h e r ,  the fatigue s t rength  evaluation of a vehicle,  whether  by analysis  o r  

by t e s t ,  should b e  made  e a r l y  in i t s  des ign  and fabricat ion stage.  

approach,  it is p rac t i ca l  e i ther  to redesign o r  to re inforce  marg ina l  and s u s -  

pect regions of a s t ruc tu re  before  reaching the production s tage of the vehicle .  

Careful  attention to design detai ls ,  coupled with the use of the m o s t  advanced 

s t ruc tu re  s t r e s s  -analysis  techniques,  will reduce  the probabili ty and the 

frequency of o c c u r r e n c e  of underdesigned and fat igue-cr i t ical  a r e a s .  

With th i s  

When knowledge of the magnitude of loads,  f r equenc ie s  of loads ,  and effect  of 

envi ronments  is  uncer ta in ,  there  is but one c o u r s e  to p u r s u e .  

r a t e d  vehicles  and fo r  vehicles  in  which the r e t r i eva l  of equipment and d a t a  

is mandatory ,  the "fail-safe" design philosophy should be used .  

philosophy, the n e c e s s a r y  s t ruc tu ra l  re inforcements  and redundant m e m b e r s  

a r e  incorporated into the design so that,  should accidental  rup ture  o r  fatigue 

c racking  in s t ruc tu re  take p lace ,  a safe r a the r  than ca tas t rophic  f r a c t u r e  

would o c c u r .  

F o r  m a n -  

In this 

An a l te rna te  design and analysis  procedure  f o r  the evaluation of fatigue r e -  

s i s tance  of s t ruc tu re  is t e r m e d  the t l s a fe - l i f e l t  method.  

re l iab i l i ty  of the fatigue r e s i s t a n c e  of s t ruc ture  is a s s u r e d  through knowledge 

that  the vehicle e i ther  will b e  r e t i r ed  o r  wil l  have accompl ished  i ts  mi s s ion  

h i i g  Sefore the fatigue life =f its parts has heen  reached. 
that the u s e  of this  design approach  should be l imited to v e r y  few c a s e s  and 

then only with e x t r e m e  caution. 

c a r r y i n g  s t ruc tu re ,  the safe  -life method is not r ecommended  for  u s e .  

In this  concept, 

It is believed 

In the fatigue design of p r i m a r y  load- 

4 



STATEMENT O F  THE PROBLEM 

The  whole subject of fatigue of s t ruc tu res  is  concerned  with the fac t  that 

during the operation of a vehicle ,  fatigue c r a c k s  can be fo rmed  within i t s  

s t r e s s e d  m e m b e r s ;  once init iated,  these  c r a c k s  may  propagate  to c r i t i ca l  

d imens ions .  

s t ruc tu re  a r e  the cause  of this damaging phenomenon and the eventual g e n e r -  

ation of flaws. 

of highly s t r e s s e d  components of a vehicle s t ruc tu re  with their  t ime in s e r v -  

i ce .  This  undesirable si tuation can r e su l t  i n  ca tas t rophic  consequences 

Designing to prevent the occur rence  of this phenomenon is  therefore  impor tan t  

i f  vehicles  a r e  to be economical ly  built and yet  p o s s e s s  adequate safety and 

construct ion that r e q u i r e s  minimal  r e p a i r .  

Repetitive loads experienced throughout the useful l ife of a 

The  mechanism i s  accumulat ive and d e c r e a s e s  the s t rength 

I n  o r d e r  to  a s s u r e  integri ty  of s t ruc tu re  and a sa t i s fac tory  life for  vehic les ,  

the s p e c t r a  of loads and envi ronments  which the s t ruc tu re  will  encounter 

m u s t  be defined. 

definition for the majori ty  of vehicles ,  a r e  those induced by wind, shock, 

vibrat ion,  engine exhaust noise,  cycling, p r e s s u r i z a t i o n ,  kinet ic  heating, 

operat ional  heating, and a tmosphe r i c  cor ros ion .  (The above conditions are 

applicable to space vehicle s y s t e m s .  ) 

The m a j o r  load and environmental  p a r a m e t e r s  requir ing 

Knowledge of the r e sponse  of s t ruc tu re  and of the behavior of m a t e r i a l s  of 

construct ion under these anticipated loads should then enable the des igne r  to 

design safe vehicles.  The  no rma l  p r a c t i c e  h a s  been to accompl ish  this  t a s k  

by accepted s t r e s s  analysis  methods in conjunction with l abora to ry  fatigue 

t e s t s  on component pa r t s .  

evaluate fatigue res i s tance  of s t ruc tu re  i s  to fa t igue-test  the en t i r e  vehicle .  

R e g a r d l e s s  of the method chosen, i t  w i l l  be possible  to make  valid a s s e s s -  

men t s  of fatigue life only through a c c u r a t e  simulation of the envi ronment  the 

vehicle  will  encounter. 

s t ruc tu re  of combined envi ronments .  

exper ienced  during the operat ion of vehicles  i s  t ime  dependent and this  factor  

cannot be overlooked. L a r g e  e r r o r s  in the predict ion of fat igue l ife and fatigue 

An a l te rna te  but far m o r e  cost ly  p rocedure  to  

I t  often wi l l  be n e c e s s a r y  to consider  the effect on 

The effect  of the many envi ronments  

3 



Exper ience  in Space Vehicle Sys t em Designs 

Converse ly ,  c u r r e n t  s e rv i ce  exper ience  with launch vehic le  and spacec ra f t  

s t r u c t u r e  is r a t h e r  l imited.  For tuna te ly ,  this  lack of exper ience  has  not 

affected the ma jo r i ty  of s ta t ic  f i r ings  and launches made ,  s ince  they have 

been  successfu l .  However ,  this  pas t  per formance  alone does not a s s u r e  

continued s u c c e s s  fo r  a l l  subsequent fl ights,  

s t r u c t u r a l  tes t ing and ana lys i s  techniques are requ i r ed  to maintain a high 

d e g r e e  of s t r u c t u r a l  in tegr i ty  f o r  fu ture  designs.  

posi t ion for  those  who have conjectured that fatigue of launch vehicle  s t r u c -  

t u r e  is  no p rob lem because  of i t s  re la t ively s h o r t  operat ional  l i fe .  

conclusion e r roneous ly  m a y  be deduced for long - t ime operat ional  spacec ra f t  

with i t s  infrequent ly  and low s t r e s s e d  s t ruc tu re .  

r a t e d  space  vehicle  s y s t e m s ,  coupled with the rea l iza t ion  of the vas t ly  d i f -  

f e r en t  and unexplored fatigue r e g i m e s ,  this p rob lem becomes  impor tan t ;  

s ince  the occur rence  of s t r u c t u r a l  fatigue i n  flight is cer ta in ly  probable .  

Table  I identifies va r ious  s t r u c t u r a l  ca tegor ies  re la ted  to the newer  fat igue 

modes  that m u s t  now be considered.  These  a r e  high load-high cycle  

and low load-low cyc le  regions f o r  both ex t r eme ly  s h o r t -  and long-t ime 

exposure  s . 

Concer ted  e f for t s  to develop 

I t  may be an  unfortunate  

The  s a m e  

With the advent of m a n -  

At  p r e s e n t ,  i t  is known that fatigue is  dependent on t i m e ,  envi ronment ,  and 

load cycle;  fo r  t hese  r e a s o n s  a lone ,  the probabi l i ty  of occur rence  of fatigue 

i n  m e t a l s  and s t r u c t u r e s  should not be  overlooked. 

f o r  the p r e s e n t  c l a s s  of space  vehicle  designs.  

any o the r  philosophy. 

Th i s  is pa r t i cu la r ly  t r u e  

I t  would be su ic ida l  t o  adopt 

Cur ren t  Evaluation Methods 

The usua l  p r a c t i c e  h a s  been to  define the fatigue c h a r a c t e r i s t i c s  of m e t a l s  o r  

of s t r u c t u r a l  components  by subjecting tes t  spec imens  of the s t r u c t u r a l  

e l e m e n t s  to r epea ted  o r  a l te rna t ing  loads.  By this p rocedure ,  des ign  da ta  

a r e  obtained to evaluate  the effect  of these al ternat ing loads on s t r u c t u r e s .  

However ,  such fat igue p r o g r a m s  have not a lways been wholly sa t i s f ac to ry  

f o r  obtaining e s t i m a t e s  of probable  s t ruc tu re  life o r  fo r  defining r a t e s  of 

non- l inear  accumula t ive  damage  to s t ruc tu res .  One of the pr inc ipa l  r easons  

6 



STATE O F  THE ART 

Genera l  

Before  the mid-1930ts ,  the design of flight vehic les  was  based  solely on the 

max imum load a s t ruc tu re  could exper ience  once in  i t s  l i fe t ime.  

guides used  during this per iod  for tunately and unknowingly proved to be 

reasonable  fatigue design c r i t e r i a .  Few,  i f  any, ca tas t rophic  f a i lu re s  of 

s t r u c t u r e  could be a t t r ibu ted  d i r ec t ly  to m e t a l  fatigue.  However ,  p r o g r e s s  

in  m a n ' s  demand fo r  vehic les  posses s ing  inc reased  pe r fo rmance  c h a r a c t e r -  

i s t i c s  advanced rapidly during the 1940ts, and in the ma jo r i ty  of c a s e s ,  the 

des ign  concepts requi red  m a t e r i a l  allowables not ye t  defined and s t r e s s  

ana lys i s  techniques not yet developed. 

lagged the requi rements  of the des igner ,  new m a t e r i a l s  eventually w e r e  p r o -  

duced and m o r e  exacting s t r u c t u r a l  ana lys i s  methods were  developed which, 

by degrees ,  evolved into designs possess ing  i n c r e a s e d  efficiency. 

The des ign  

Although development of m a t e r i a l s  

However ,  a forced t rend toward higher  and higher  working s t r e s s e s  soon 

o c c u r r e d  which resu l ted  i n  d e c r e a s e d  m a r g i n s  of safety.  

r i s e  in the number of s t r u c t u r a l  fatigue p rob lems  was experienced.  

the  pas t  20 yea r s  there  has  been a gradual  recogni t ion of the fatigue p rob lem 

and, today, the design of s t r u c t u r a l  m e m b e r s ,  and espec ia l ly  s t r u c t u r a l  jo in ts ,  

is no longer  based on one maximum load. 

designed and analyzed f o r  a sa t i s fac tory  l i fe  under  the many small, repea ted ,  

and dynamic loads they will be  subjected to in se rv i ce .  

Ult imately,  a rap id  

During 

Now flight vehicle  s t r u c t u r e s  a r e  

Within the past  25 y e a r s ,  industry has  spent  a t remendous  amount  of e f f o r t  

to avoid ca tas t rophic  fatigue fa i lures .  

the avoidance of fatigue cracking which incu r s  cost ly  maintenance problems.  

References  1 to 21 p resen t  good evidence of the  e f for t s  and s u c c e s s e s  ex-  

per ienced  in  the field. 

c a m e  about through a g r e a t  mass of exper ience  with flight s t r u c t u r e  and 

through acceptance of the fact  that  fatigue could occur  in flight vehic le  

s t r u c t u r e .  

E f f o r t s  a l s o  have been d i r ec t ed  toward 

It should be  recognized,  however ,  that  this s u c c e s s  

5 



. f o r  this i s  that load cyc le s  in fatigue testing usual ly  a r e  applied r egu la r ly ,  

w h e r e a s  in  p rac t i ce ,  loads on s t r u c t u r e s  fluctuate indiscr iminately.  

In the design of many planned flight vehicles ,  c u r r e n t  and future ,  i t  i s  n e c e s -  

s a r y  f i r s t  to define the r e s p o n s e  of s t r u c t u r e s  to random al ternat ions of 

s t r e s s .  T h e s e  s t r e s s  a l t e rna t ions  arise f r o m  a d i s o r d e r e d  distribution of 

loads which is  r ea l i s t i ca l ly  encountered within vibrat ion,  acoust ic ,  and 

turbulent -a tmosphere environments ,  

Analytic methods have been developed for calculating the approach of f a i lu re  

of a s t r u c t u r e  subjected to these  complex environments .  

method p red ic t s  the damage imposed under random loads f r o m  the damage  

observed  and m e a s u r e d  under d i s c r e t e  amplitude loading. 

method h a s  been tentatively accepted, additional experimental  da t a  a r e  r e  - 
qu i red  to demonst ra te  that the behavior calculated for  random cycl ical  loading 

a g r e e s  with the observed  phenomenon. Notably, th i s  lack of expe r imen ta l  

proof e x i s t s  fo r  such c h a r a c t e r i s t i c  s t ruc tu ra l  p r o p e r t i e s  a s  fatigue life and 

fatigue -crack p rogres s ion .  

In theory,  the 

Although this 

In  s u m m a r y ,  fatigue s t r eng th  evaluations f o r  the s t r u c t u r e  of space vehicle  

s y s t e m s  r e s t s  pr incipal ly  on r e s u l t s  determined f r o m  laboratory t e s t s .  R e c -  

ognition of the inc reased  importance of testing is evidenced by the l a rge  

number  of space  vehicle s y s t e m  t e s t s  completed and planned. F i g u r e  1 

shows a typical  t r e n d  in  the number  of design evaluations r equ i r ed  by one 
~ ~ a n u f a c t u r e r  for  launch vehicle  struct.ure. 

I t  is mandatory that  any testing procedure,  to obtain the r equ i r ed  information,  

be  appropr i a t e ly  applied,  control led,  and mon i to red .  Otherwise,  predict ions 

of s t r u c t u r a l  behavior  will  be invalid. 

acceptable  tes t ing p r o c e d u r e s  which a r e  well  worth reviewing b e f o r e  any 

s t r u c t u r a l  fatigue investigation (see References 9, 10, 11, 13, 22) .  

There  a r e  many r e f e r e n c e s  concerning 

In addition, dynamic a s  well  as  stati.c s t r e s s  ana lyses  a r e  n e c e s s a r y  supports  

to  tes t ing evaluations fo r  the predict ion of s e r v i c e  l ife.  Dynamic s t r e s s  

a n a l y s e s  a r e  probably m o r e  e s sen t i a l  than eve r  b e f o r e ,  since the complex 
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I slight modif icat ions have been suggested ( s e e  Appendix A ) ,  I n  1956, A.  K .  Head 

and F. H. Hooke (Reference  26) suggested a cumulative fatigue damage ru l e  

f o r  s t r u c t u r e  subjected to random noise .  

By this r u l e ,  the life o r  number  of cyc les  to fa i lure  f o r  s t ruc tu re  under r a n -  

dom loading was  calculated f r o m  the measu red  life under d i s c r e t e  loading and 

was  e x p r e s s e d  by the equation: 

where  

X = r a t i o  of peak s t r e s s e s  to the root  m e a n  squa re  s t r e s s ,  

and 

N 
level of x. 

= number  of cyc les  to fa i lure  under  d i s c r e t e  loading a t  each  
(xi) 

Th i s  approach  was  used  for  s t r u c t u r e  having a single -degree  -of - f reedom 

response .  In 1959,  A. Eshleman (Reference  18) suggested equat ions fo r  

predict ing the fatigue life and damage  to s t r u c t u r e  having a two -degree  -of - 
f r eedom response .  In this method, the life under  random loading w a s  c a l -  

cu la ted  f r o m  the following: 

where  

~ listribution of 
s t r e s s  peaks  

10 
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Figure 1 
_ _ _ _ _ _ _ _ ~  

loads induced by vibrat ion,  acous t i c s ,  f l u t t e r ,  and buffeting a re  random in 

na tu re  and all  can contribute to the fatigue problem.  

T h e r e  is  also a need fo r  accumulat ive fatigue damage r u l e s .  

r e n t  pract ice  to u s e  the l ife-fraction concept (Reference 23) suggested by 

B . F .  Langer in  1938. 

c e r t a i n  d i s c r e t e  load was N1, and i f  n 1 
the f ract ion n / N  of the fatigue r e s e r v e  of the s t r u c t u r e  w a s  consumed. If 

th i s  w a s  followed by n 

then a n  additional f ract ion n2/N2 was  consumed.  

to occur  when 

I t  h a s  been c u r -  

Th i s  theory suggested that i f  the fatigue life under  a 

cyc le s  of th i s  load w e r e  appl ied,  then 

1 1  
cyc le s  of a load level  corresponding to a l i f e  N 2 2 c y c l e s ,  

F a i l u r e ,  then,  w a s  p red ic t ed  

t -  n3 t . . . . . .  = 1 . 0  D = C T =  n - n “2 
N + -  N3 

In 1944, experiments  w e r e  conducted a t  Douglas A i r c r a f t  Company which 

demonstrated this to  be  a r easonab le  ru l e  (Refe rences  24, 25). 
expe r imen t s ,  a number of investigations have been c a r r i e d  out and many 

Since these  
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and damage w a s  predic ted  by 

D=CCS = 1 . 0  (4) 

It is believed that p rac t i ca l  solutions to the fatigue problem f o r  c u r r e n t  space  

vchicle  s y s t e m s  can be found by these  methods.  It is the intent of this r e p o r t  

to outline p rocedures  fo r  analyzing, designing, and testing s t r u c t u r e  to 

sa t i s fac tor i ly  withstand loads imposed du r  ng launch and space  flight. 



' 
(d) 

(e )  

( f )  

(g) 

(h) 

(i) 

Apply fitting f ac to r s  of s a fe ty  to net  s t r e s s e s  around holes  and 
cutouts e 

Labora to ry  t e s t  all newly designed joints and compare  with " t ime-  
t r ied"  s t ruc tu res .  (F igu re  2) 

Utilize longitudinal g ra in  direct ion of m a t e r i a l s  whenever poss ib le  
(pa r t i cu la r ly  for a luminum and s t ee l  a l loys) .  

P rov ide  generous f i l le ts  and radii. 

B r e a k  all s h a r p  edges - Pol i sh  c r i t i ca l  regions if  cons idered  
n e c e s s a r y ,  

Reduce bear ing  s t r e s s e s  in  r iveted and bolted m e m b e r s  to design 
min imums  

( j )  

(k) 

(1) 

(m) P r o v i d e  easy  a c c e s s  f o r  s e r v i c e  inspect ion of s t ruc tu re .  

(n) 

(0) 

(p) 

(4) 

( r )  In some  c a s e s ,  when necessa ry ,  soft mount i t ems  that a r e  

( s )  

( t )  

(G) 

(v) 

(w) 

(x) 

(Y) 

(z )  

Take  precaut ions to protect  pa r t s  f r o m  cor ros ion .  

Whenever poss ib le  reduce  eccentr ic i ty  of joints and fi t t ings.  

Make doublers  and s t ruc tu ra l  re inforcements  r e su l t  in gradual ,  
r a t h e r  than abrupt ,  changes in  c ross -sec t ion .  

Inspection procedures  during fabricat ion and a s sembly  of s t r u c t u r e  
a l s o  should be  provided. 

When p rac t i ca l  produce p a r t s  and fi t t ings f r o m  forged m a t e r i a l  
r a t h e r  than f r o m  ext rus ions  o r  machined p la te  stock. 

Design p a r t s  f o r  minimum mis-match  on installation - this r e su l t s  
i n  lower  r e s idua l  and pre load  tens i le  s t r a ins .  

Avoid superposi t ion of "notches" in  design. 

c r i t i ca l  for  vibrat ion environments .  
Select  configurations with inherent ly  high s t r u c t u r a l  damping. 

Optimize b racke t  and component resonance frequencies  consider ing 
both s e r v i c e  environment  and equipment fragil i ty.  

Fvtinimize the number of coupled resonances  - that is, the number  of 
vibrat ing components i n  s e r i e s  within a s t r u c t u r a l  assembly .  

S t agge r  the resonances  f o r  the i tems  within an  a s sembly .  
impedances  of mounted i t e m  and its bracke t .  ) 

Make a p r o p e r  select ion of ma te r i a l s  with cos t ,  s t rength  al lowables ,  
fabr icabi l i ty ,  and environmental  effects in  mind. 
P a y  c lose  attention to fabr ica t ion  techniques f o r  optimum forming  
of components  

E s t a b l i s h  re l iab le  welding techniques f o r  reproducibi l i ty  of joint 
s t r eng ths  

Cons t ruc t  r igid and p rec i s ion  tooling f o r  the manufac tu re r  of produc-  
t ion pa r t s .  

(Mismatch  

14 



RECOMMENDED PRACTICES 

Design Guides 

At the p r e s e n t  level  of knowledge, i t  is i m p r a c t i c a l  to quantitatively lay down 

the l imiting fatigue design ru l e s  f o r  specif ic  s t r u c t u r a l  configurations,  

d ive r s i ty  in  mis s ions ,  loads,  s t r e s s e s ,  m a t e r i a l s  and environments cer ta inly 

suggest  this to be  an impract icable ,  if  not impossible ,  task.  

however,  the p rac t i ces  to be followed in  the design of fatigue r e s i s t an t  s t r u c -  

t u r e  can  be  defined, and if  s t r i c t  adherence  to t h e s e  established p rac t i ces  is 

c a r r i e d  out, then potential fatigue problems c a n  be reduced in the init ial  s t a g e  

of s t r u c t u r a l  design. 

T h e  

Qualitatively, 

Excellence in detail design, weight saving, and simplicity a r e  all c losely r e -  

lated.  

fabrication, longer s e r v i c e  l ife,  and inc reased  reliabil i ty,  all of which a r e  

des i r ab le  cha rac t e r i s t i c s .  

s ince the scheduled design t ime  allowed des igne r s  often i s  too s h o r t  to develop 

and improve  a complicated design. To the a v e r a g e  designer  a complex design 

m a y  look be t te r ,  m o r e  interesting, and m o r e  challenging, but it a l s o  can 

r e su l t  in problems during t e s t  and in the operat ion of a vehicle. 

the bas i c  rules  used in the a i r f r a m e  industry will apply in the design of s p a c e  

vehicle sys t ems .  

c a r r i e d  ove r  to the o the r ,  although s o m e  precaut ions should be  taken. 

designs may be unsuited to a new environment.  

The r e su l t  of t hese  combined f ea tu res  i s  usually low cost,  e a s e  of 

This i s  important  f r o m  a pract ical  point of view, 

In gene ra l ,  

P a s t  experience and learning f r o m  the one field can  be  

Old 

When procedures  a r e  proposed, they often become gene ra l  r u l e s  which r egu-  

l a t e  s t r u c t u r a l  design, even though they m a y  b e  inappropriate .  Recommenda-  

tions used  i n  t he  s e n s e  of "design guides" a r e  far m o r e  appropriate .  

this interpretat ion,  a few of the m o r e  per t inent  guides f o r  the design of s p a c e  

vehicle s y s t e m s  may b e  l i s ted :  

With 

(a) Keep the design s imple.  

(b) 

(c)  

Provide f o r  multiple load paths when feasible .  

Give e x t r a  consideration to tension loaded fi t t ings and components.  

13 
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Undoubtedly, there  a re  additional fa t igue design guides that a r e  useful and 

could b e  added to the above l i s t .  

tuitively known by the m o s t  experienced design spec ia l i s t s .  

design, however, i s  not accomplished by the des igne r  alone. It r e q u i r e s  the 

close cooperation of spec ia l i s t s  able  to p e r f o r m  complex dynamic s t r e s s  

ana lyses ,  acoust ic ians ,  vibration eng inee r s ,  me ta l lu rg i s t s ,  and spec ia l i s t s  in 

s t r u c t u r a l  testing and reliabil i ty analysis  a s  well a s  those experienced in 
tooling and manufacturing.. F o r  example,  many a e r o s p a c e  companies  have 

init iated worthwhile training p r o g r a m s  to  inform their  m e m b e r s  of the funda- 

menta ls  of the var ious discipl ines .  A des igne r  cannot be  expected to  be  a n  

authority i n  acoustics o r  vibration, but a l i t t l e  knowledge in other  f ie lds  can  

s a v e  considerable  t i m e  and r e su l t  i n  g r e a t e r  a s s u r a n c e  of the s u c c e s s  of the 

f ina l  design. 

Many such  guides a r e  unwritten and only in- 

Excel lence i n  

An example of the type of information available to the designer  i s  shown in 

F i g u r e  2 .  

on th is  cha r t ,  it does  give a f i r s t  approximation of l ife for  typical cons t ruc -  

tion i f  the working s t r e s s e s  a r e  known. Another example of useful i n fo rma-  

tion fo r  the designer  i s  shown in F i g u r e  3. 

bracke t  designs subjected to  vibrat ion environments .  

a r e  now available within the industry and could a s s i s t  des igne r s  if the expe r i -  

ences  of individual manufac turers  w e r e  recorded  on c h a r t s  l ike that in 

F i g u r e  3. 

only would save t i m e  in the production s t r e s s  ana lys i s  but a l s o  would a s s u r e  

a higher probability of the s t r u c t u r e  passing the final qualification t e s t s .  

designer  can be expected to have s o m e  knowledge concerning the calculations 

r equ i r ed  f o r  a dynamic s t r e s s  ana lys i s .  T h e s e  include the evaluation of such 

p a r a m e t e r s  a s  resonant  frequency, impedance,  and t r a n s f e r  functions f o r  

s imple  s t ruc tu re .  

the final and f o r m a l  dynamic s t r e s s  ana lys i s .  

Although i t  may be difficult to accurately identify a new design 

The example shown i s  f o r  

Many of t hese  data 

Designer analysis  of s t r u c t u r e  with the aid of this type of c h a r t  not 

A 

But, the des igne r  cannot be expected to be responsible  f o r  

T h e s e  guides and recommended t ra ining f o r  d e s i g n e r s  are  suggested f o r  the 

s o l e  purpose of reducing the ove ra l l  development t i m e  f r o m  p re l imina ry  d e -  

s ign lay-out to a s s e m b l y  in production. 
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' A specif ic  tes t  load should be applied in a rea l i s t ic  manner ;  under  no c i r c u m -  

s tances  should the fatigue charac te r i s t ics  of s t ruc tu re  fo r  one load type be  

a s s u m e d  to be  identical  fo r  a n  a l te rna te  load type, S imi la r i ly ,  the  fatigue 

modes  under  sinusoidal wave loading should not be  a s s u m e d  to b e  identical  

with the f a i lu re  modes under random loading. 

the prediction of overa l l  fatigue l i fe  under random loads f r o m  t e s t s  under  con- 

s tant  amplitude loads,  but considerable  r e s e a r c h  is r equ i r ed  to ref ine p re sen t  

methods of analysis .  At the p re sen t  t ime, no d i sc re t e  load t e s t  can b e  con- 

s i d e r e d  to produce the equivalent damage of a random load t e s t ,  although a 

c lose  approximation of fatigue l ife under random loads can  b e  made  by the 

integrat ion of damage  incu r red  by a many-stepped d i sc re t e  load spec t rum.  

T h e  p rocedures  fo r  making this  numer ica l  approximation a r e  outlined in  

Appendix D. 

I 

Techniques are  available f o r  

I 

I In des ign  development fatigue tes t ing,  the des igne r  often encounters  the prob-  

l e m  of extrapolating exper imenta l  data.  

the f ina l  design loads f o r  s t ruc tu re  a r e  different f r o m  the init ial  loads to which 

the  ea r ly  design was  tested.  

A common and acceptable method f o r  extrapolating des ign  da ta  f r o m  a s m a l l  

amount of tes t  data  is i l lus t ra ted  by  the following d i ag rams .  

apply i r r e s p e c t i v e  of the type of fatigue test  o r  ca tegory  of fatigue tes t  data. 

Norma l  exper ience  h a s  indicated that 

However,  this p re sen t s  no s e r i o u s  problems.  

Th i s  method w i l l  

F i g u r e  4 shows typical S-N curves  for  a n  example  design problem.  

v e r y  ea r ly  design s tages ,  the fatigue cha rac t e r i s t i c s  were  de te rmined  on 

inexpensive Iiotched coupons representat ive of the design. 

plex spec imens  of the f inal  se lec ted  design were  a l so  tested.  

l ives  of these  tes t  e lements  a r e  not identical, but the cha rac t e r i s t i c  shapes  

of the S - N  c u r v e s  can be  a s sumed  to  b e  similar. With this technique, the 

r e su l t s  f r o m  a few t e s t s  can  b e  extrapolated to define behavior ove r  l a r g e  

r anges  of loading conditions. 

In the 

A few m o r e  com-  

The  fatigue 

In this example,  i t  is a l so  a s sumed  that the f inal  design loads eventually were  

proven  different  f r o m  the init ial  t es t  loads. 

t es t ing  p r o g r a m ,  s ince  i t  is possible  to calculate the cha rac t e r i s t i c s  of the 

r e v i s e d  des ign  environment  f r o m  tes t  resul ts  of the init ial  conditions. 

It is not n e c e s s a r y  to repeat  the 

This  
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Testing Methods 

Th i s  sect ion briefly d i s c u s s e s  var ious types of fatigue and vibration t e s t s  re-  

quired in  the evaluation of safe s t ruc tu re .  

o the r s  and is per formed f o r  a specific purpose.  

of fatigue t e s t  p r o g r a m s  a r e  used to  evaluate s t ruc tu re :  

E a c h  type of t e s t  d i f f e r s  f r o m  the 

T h e  following m a j o r  classes 

(1) Experimental  r e s e a r c h  
( 2 )  Design development t e s t s  
( 3 )  Qualification t e s t s  
(4) Production acceptance t e s t s .  

Experimental  r e s e a r c h .  - -Experimental  fatigue r e s e a r c h  is c a r r i e d  out 

f o r  the expres s  purpose  of defining the effects of va r ious  environmental  

p a r a m e t e r s  on the behavior of m e t a l s  and s t r u c t u r e s .  T h e  l abora to ry  s p e c -  

imens  a r e  usually s imple  elements  and seldom p o s s e s s  the exact detai ls  of a 

functional design. T h e  r e su l t s  of such  investigations,  however,  a r e  useful in 

design, but only qualitatively. Also,  this type of testing can  uncover o the r  

phenomena and d i r e c t  f u r t h e r  r e s e a r c h .  

document suggest s o m e  areas in  which f u r t h e r  r e s e a r c h  is required.  

T h e  appendixes a t  the end of th i s  

- Design development t e s t s .  - - In  the e a r l y  s t ages  of a design, i t  i s  good 

p rac t i ce  to per form t e s t s  on those s t r u c t u r a l  a r r a n g e m e n t s  that  appear  to be  

the most  fatigue r e s i s t an t .  Th i s  type of t e s t  is not the f ina l  analysis  of a d e -  

sign, but i t  often, uncovers  many undesirable  s t r u c t u r a l  c h a r a c t e r i s t i c s  * 

When this test  technique is used, t h e r e  is g r e a t e r  a s s u r a n c e  that the design 

finally selected w i l l  be successful .  

this approach to be taken, the des igne r  is then f o r c e d  to r e ly  upon past  

knowledge and experience.  

If cost  and excess ive  time do not allow 

In a fatigue test ,  i t  is des i r ab le  to evaluate as many r ep l i ca t e  samples  of a 
s t r u c t u r a l  element as pract icable .  

the bes t  es t imate  of the conditions that w i l l  occu r  under  i t s  planned and 

varying missions.  

o r  compression,  f l exure ,  torsion, or combinations of t hese  loads.  

Accordingly,  a des ign  should b e  tes ted to 

T h e  tes t  loads imposed on a s t r u c t u r e  may be ax ia l  tension 

17 
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environments  appear  to be  m o r e  s e v e r e  than those encountered during ac tua l  

vehicle operation. 

penal t ies .  However,  until additional experience in the m e a s u r e m e n t  of 
flight loads is gained, the t e s t  specifications should not b e  reduced. Table I1 
i l l u s t r a t e s  ssme exper ience  in the evaluation of fatigue i n  launch vehicle s y s -  

t e m s  f r o m  the i r  vibration, acoust ic ,  and shock qualification tes t s .  T h e  num-  

b e r  of t e s t  p r o g r a m s  completed by one contractor  i s  in  the hundreds and the 

total  number  of p r o g r a m s  planned exceeds a thousand. 

p r o g r a m s  shown in  the table  r e p r e s e n t s  only a small p a r t  of total  industry ex-  

per ience.  

t rends.  

t u r e  prompted  these  design evaluations. 

in  the qualification testing phase,  and increased numbers  of design evalua- 

t ions have  been  planned. 

The  sever i ty  of present  tes t  specifications suggests  design 

T h e  number  of tes t  

Neve r the l e s s ,  i t  is believed that these  few c a s e s  r e p r e s e n t  typical 

Acceptance of the f ac t  that fatigue could occur  i n  launch vehicle s t r u c -  

Th i s  p r e m i s e  proved c o r r e c t  a t  l ea s t  
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operat ion is pe r fo rmed  with the aid of F i g u r e  5. Extrapolated and i n t e r -  

polated values f r o m  the component s - N  cu rve  of F i g u r e  4 a r e  replot ted in 

F igu re  5. 

cu rves  graphical ly  f o r  o ther  s t r e s s  r a t io s  and s t r e s s  ranges .  

a constant mean-load line equivalent to a load of 2170 of the ul t imate  s t r eng th  

of the component h a s  been constructed.  The max imum s t r e s s  in a cycle  and 

the corresponding cyc les  to fa i lure  fo r  this  s e t  of conditions can be r e a d  f r o m  

the f igu re  and replot ted a s  shown by the lower S-N cu rve  in F igu re  4. 

Within reasonable  l imi t s ,  it i s  pe rmis s ib l e  to de t e rmine  S-N 

In F i g u r e  5, 

Qualification t e s t s .  - - I t  i s  c u r r e n t  p rac t i ce  to evaluate  the fatigue r e s i s t ance  

of space  vehicle sys t em s t r u c t u r e  by v ibra t ion  and acous t ic  testing. 

This  type of tes t ,  r e f e r r e d  to a s  a qual i f icat ion t e s t ,  i s  c a r r i e d  out on 

t e s t  a r t i c l e s  r ep resen ta t ive  of production vehic le  s t r u c t u r e .  
t e s t s  a r e  supplemented with ana lyses ,  although i t  is usua l  p r a c t i c e  to  p e r f o r m  

complex cumulative fat igue ana lys i s  only in  those  ins tances  where  f a i l u r e  oc-  

c u r r e d  during tes t .  

t egr i ty  of components,  even though p r e s e n t  qualification tests and the i r  

In some  c a s e s ,  

T h e s e  safeguards  a r e  taken to prove  the  s t r u c t u r a l  in- 
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VIBRATION QUALIFICATION 

TEST FOR SIV THRUST 

STRUCTURE AND 
FUEL LINES 

Fieure 6 

Product ion  acceptance tes t s .  --Acceptance testing of s t ruc tu re  differs  f r o m  

qualification testing in many respects .  Acceptance t e s t s  a r e  functional 

t e s t s  in which the actual  flight a r t i c l e  undergoes var ious checkouts be fo re  

launch. 

sur iza t ion  checks and the s ta t ic  fir ings.  

and niechanica! darr,age accax-s ia the  s t ruc t c re  of t e s t  rrrticles that. are Later 

discarded.  However,  in  acceptance  testing, fatigue damage  is incu r red  i n  

the ac tua l  f l ight a r t i c l e  and this is usually i r r eve r s ib l e .  

gene ra t ed  i n  this  m a n n e r  accumula tes  with the damage  produced during flight. 

Since s p a c e  vehicle s y s t e m s  mus t  complete the i r  m i s s i o n s  without fa i lure ,  

this  m a k e s  knowledge of the fatigue charac te r i s t ics  of the s t r u c t u r e  and i t s  

m a t e r i a l s  undergoing this type of t e s t  important.  

Undoubtedly, the most  damaging tes t  phases  a r e  the fue l  tank p r e s -  

In qualification tes t ing,  the physical 

Any amount of damage  

In s u m m a r y ,  fou r  m a j o r  types of t e s t  p rog rams  have been discussed.  

s e r v e s  a specific purpose.  

given design. 

dit ions f o r  a tes t  b e  careful ly  simulated. 

Each  

In many cases ,  all four  types a r e  r equ i r ed  f o r  a 
F u r t h e r ,  i t  is necessa ry  that the load and environment  con- 

The  data  collected f r o m  such  t e s t s  
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Table I1 

STRUCTURE QUALIFICATION TESTS 

OCTOBER 1964 

P r o g r a m  Launch Vehicle A Launch Vehicle B 
._ - -___ ~ 

T e s t s  Planned 400 700 

T o t a l  Number of T e s t s  
C omple t ed 9570 2 570 

Number of T e s t s  P a s s i n g  
Initial T e s t  P r o g r a m  2070 7170 

Number of T e s t s  Repeated 
(one o r  m o r e  t imes )  
Before Pass ing  8070 2 970 

Many of the initial Launch Vehicle A t e s t s  shown in Table I1 failed to p a s s  

the qualification p r o g r a m .  
fatigue cracking in a var ie ty  of components. 

c r i t e r i a  were r e l e a s e d  (Refe rences  33 and 34), they proved to be m o r e  s e v e r e  

than those to which the vehicle w a s  originally designed. 

fundamentally responsible  f o r  requir ing the r edes ign  and r e t e s t  of s t r u c t u r a l  

items. However,  the experiences gained during this s t a g e  of development 

proved valuable, as evidenced by the inc reased  number  of Vehicle B c o m -  

ponents that p a s  s ed qualification specifications.  

F a i l u r e  in many of t hese  c a s e s  was at t r ibuted to  

When the p re l imina ry  t e s t  load 

T h i s  si tuation was 

F i g u r e  6 shows a relat ively l a r g e  t e s t  a r t i c l e  being readied f o r  i t s  v i b r a -  

tion qualification t e s t .  

the t h r u s t  s t ruc tu re  of a l a r g e  second-stage launch vehicle.  

on an electrodynamic s h a k e r  which h a s  a capaci ty  of 32, 000 lb. of force.  

The load and frequency s p e c t r u m  f o r  which th i s  s t r u c t u r e  qualified i s  

detailed in the t e s t  specification documents of References  33 and 34. 

The t e s t  a r t i c l e  shown i s  the fuel l ine supported by 

It i s  mounted 
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Table I11 
SPACE VEHICLE SYSTEMS = LAUNCH VEHICLE 

STRUCTURE t SPACECRAFT 

Load Source  

Vehicle T ranspor t a t ion  

P r e s s ur iza t  ion 

Engine F i r i n g  

Atmosphere  

Stage Separat ion 

Doc king 

(Aerodynamic 
c h a r a c t e r  is t ic  s ) 

Rotating Machinery  
(C ent rifug e )  

Load Duration 

Seconds 

Minutes 

Hours  Y e a r s  

Load Type  

Thrus t  -Buildup 

Shock 

Mechanical Vibration 

Aco u s t ic  

T h e r m a l  

Buffeting 

Gust and Wind Gradien t  

Maneuver  

Res idua l  (in fabr icat ion)  

Load Frequency  

c PS 
CPM 

CPD 

Cycle  Load 
Wave Shape 

Dis c r e t  e 

Sinusoidal 

Square  

Tr i angu la r  

Random 

Environment  

C o r r o s i v e  

C r y o g enic  

Elevated Temp. 

High Temp.  

Space Radiation 

Met eo r oid 

Long-Time Vacuum 

E r r o s i v e  (nozzles ,  
pumps)  
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a r e  usable  i n  future  designs.  

pe r i ence  which the  des igner  can  u s e  i n  the following ways: 

T h e s e  da t a  can  provide knowledge and ex- 

(1) F o r  the establ ishment  of r ea l i s t i c  t e s t  requi rements .  

(2) F o r  the compar ison  of des ign  and t e s t  r equ i r emen t s  wi th  ac tua l  
conditions. 

(3 )  F o r  cumulative damage  evaluations of s t ruc tu re .  (The  des igne r  
gains confidence when exper iment  equals theory. ) 

(4) F o r  the es t imat ion  of vibrat ion conditions on fu tu re  flights. 

Approach to  Fat igue Life Predic t ion  

The completion of t h r e e  m a j o r  t a s k s  is requi red  before  the fatigue l ife of any 

s t r u c t u r e  can  be evaluated. These  t a sks  a r e  as follows: 

(1) 

(2)  Calculations of s t r u c t u r a l  response .  

( 3 )  

Accura te  definition of the loads and environments  imposed on the  
s t ruc ture .  

Cumulative damage ana lys i s  and fatigue life prediction. 

The complexity of the fatigue life predict ion problem,  as d i scussed  in 

previous sect ions of this repor t ,  d ic ta tes  that  the technical  discipl ines  of the 

s t r e s s  analyst ,  dynamicis t ,  acoust ic ian,  and me ta l lu rg i s t  a r e  all requi red  f o r  

a solution to the problem. The interdependence of the t h r e e  t a sks  above demands  

a coordinated effort  within the va r ious  technologies to a s s u r e  s t r u c t u r a l  design 

f r e e  f r o m  p rema tu re  fatigue fa i lures .  

Definition of load and environment .  - -The  s o u r c e s  and types of loads  that 

may  cause  fatigue c r a c k s  o r  fatigue f a i l u r e  of s t r u c t u r a l  and equipment  

components of space  vehicle  s y s t e m s  a r e  i temized  in Table 111. 

c r a f t  s t ruc tu re  can be affected by all loads exper ienced  f r o m  the t i m e  of 

liftoff throughout the per iod of its fl ight mi s s ion ,  whereas  the launch vehicle  

s t r u c t u r e  is affected only f r o m  liftoff throughout i t s  a tmosphe r i c  flight and to  

the instant of payload separa t ion .  

varying amounts by p r i o r  handling and t r anspor t a t ion  loads .  

Space-  

Both types of s t r u c t u r e  a r e  affected in 

Before  a fatigue s t r eng th  evaluation of a s t r u c t u r a l  s y s t e m  can  be per fo rmed ,  

a quantitative definition of the shape ,  t ime  of dura t ion ,  and f requency  of oc-  

23 



Table IV 
STRUCTURE QUALIFICATION TESTING 

(Specifications Documented for  Launch Vehicle S y s t e m s )  
- ~~ 

1. Sinusoidal-Sweep Rate  and G leve l  Specified 

2. Sinusoidal Resonance Duration Specified f o r  na tura l  f requencies  

3. Random Duration and power spec t r a l  densi t ies  
(PSD) level specified 

4. Shock Duration and peak G specified 

5. Acoustic Duration and overa l l  db - -  l eve l  vs. f r e -  
quency spec t rum specified 

M-22501 
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c u r r e n c e  of the load cycles m u s t  b e  defined. 

n e c e s s a r y  to include the effect of the appropr i a t e  environment acting in con- 

junction with the repeated dynamic loads f o r  predict iocs  of fatigue c h a r a c t e r -  

i s t i c s  ( s e e  Appendix B). 

In many instances,  it w i l l  be 

At the present  l eve l  of industry and government experience,  t h e r e  a r e  two 

m a j o r  c l a s s e s  of s t r u c t u r a l  fatigue loading f o r  which space  vehicle components 

can  b e  evaluated. T h e s e  a r e  as follows: 

(1) 

(2) 

T h e  loads desc r ibed  by qualification t e s t  specifications.  

T h e  loads based  on the best  e s t ima te  of loading within the p r e s c r i b e d  
vehicle m i s s i o n  prof i le ,  including loads inposed during acceptance 
testing 

T h e  u s e  of e i ther  I tem 1 o r  2 above in defining the dynamic s t r u c t u r a l  r e s p o n s e  

loads is dependent upon the d e g r e e  of des igne r  experience and the pa r t i cu la r  

phase in  design. In the p re l imina ry  design s t age  of a relat ively new vehicle,  

i t  is not always feasible  to evaluate reliably the s t r u c t u r e s  environment o r  

its dynamic loading in  a quantitative manner .  In these  c a s e s ,  i t  is r e c o m -  

mended that s t r u c t u r e  be  evaluated f o r  a fatigue environment based on the 

loads p re sc r ibed  by the qualification t e s t  specifications.  

ana lys i s  based upon these  loads w i l l  provide a conse rva t ive  e s t ima te  of the 

o c c u r r e n c e  of f a i l u r e  and w i l l  r e su l t  in a good o v e r a l l  reliabil i ty of the s t r u c -  

t u r a l  system. Principal ly ,  t hese  loading specifications outline the magnitude 

and type of loads, the frequency spec t rum,  and the durat ion of the loads.  

Table IV desc r ibes  a typical loading environment specified by the qualification 

test-loading spec t rum.  This testing environment  can  be designed to  

include the effects of a l l  load s o u r c e s  and load types i temized in 

Table 111. 

loading. 

In gene ra l ,  a fatigue 

Figure 7 shows the va r ious  wave shapes a s soc ia t ed  with each 

In l a t e r  design s tages ,  instrumented vehicle flight data  a r e  often available S O  

that  the dynamic c h a r a c t e r i s t i c s  and induced loads may be be t t e r  defined. 
T h i s  information can provide g r e a t e r  confidence that a p r o p e r  select ion in the 

loading history f o r  future  miss ions  h a s  been  made .  Eventually,  qualification 

t e s t  specifications may ei ther  be modified o r  replaced with a r e a l i s t i c  m i s s i o n  
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profi le  environment. 

plotted in F igu res  8 and 9. F r o m  these  data ,  h i s t o g r a m  c h a r t s  may  be con- 

s t ruc t ed  for each phase of the p r e s c r i b e d  m i s s i o n  as shown in F i g u r e  10. 
E a c h  block of the f igu re  may  include both d i s c r e t e  and random frequencies  

of loading i n  a nar row-  o r  wide-band spec t rum.  

Typical examples  of recorded  fl ight t e s t  data a r e  

P red ic t ion  of s t ruc tu ra l  response.  - - T h e  problem of calculating the response  

of s t ruc tu re  to  a dynamic load environment begins by simulating the 

complex s t r u c t u r e  into a n  idealized s y s t e m  of lumped m a s s e s  and sp r ings  

capable  of being analyzed by the dynamicis t .  By analysis  methods,  the mass 
m a t r i x ,  damping ma t r ix ,  and s t i f fness  o r  influence coefficient m a t r i x  may  be 

de termined  and  the resul t ing t r a n s f e r  functions and na tu ra l  f r equenc ie s  of the 

s t r u c t u r a l  sys tem defined. Stat ic  analysis  techniques a r e  then used to d e t e r -  

m i n e  the s ta te  of s t r e s s  o r  load f o r  the s t r u c t u r a l  component f o r  each of the 

resonant  f requencies  excited by the dynamic loading environment.  
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At th is  t ime ,  a cooperat ive effort between the s t r u c t u r a l  des igne r  arid dy-  

namicis t  is r equ i r ed  to es tabl ish qualitative ru l e s  of design. 

improved design. 

could a l t e r  the na tu ra l  frequency such  that the resonance r e s p o n s e  loads a r e  

d ra s t i ca l ly  reduced, o r  in s o m e  instances even eliminated. 

the resonance frequency may  be  m o r e  advantageous f r o m  a weight cons ide ra -  

tion than a change in  the s t rength cha rac t e r i s t i c s .  

T h e  r e s u l t  is a n  

For example,  a design change in  the s t r u c t u r a l  s t i f fness  

T h i s  change i n  

Fat igue damage analysis .  --With the dynamic loading enivronment defined 

and the r e sponse  c h a r a c t e r i s t i c s  determined,  the s t r u c t u r e  m a y  now be 

evaluated f o r  fatigue damage. 

b e r  of repeated load cycles f o r  each of the wave shapes (i. e. , d i s c r e t e  o r  

random) and to a s s e s s  the fatigue damage by using a n  accumulat ive damage  

technique. 

actual  component. 

a c t e r i z e  the cyclic load wave shapes and s t r u c t u r a l  environment.  

Briefly,  the problem is to d e t e r m i n e  the num- 

T h e  fatigue damage is re la ted to the S - N  c u r v e  of the m a t e r i a l  or 

T h e  S - N  c u r v e s  a re  determined through testing and c h a r -  

In the following section, a recommended analysis  technique is used to 

desc r ibe  a numer ica l  example in  detail.  

ponent subjected to  the mechanical  vibration s p e c t r u m  of a qualification 

test .  

analysis  when the loads a r e  random in nature.  

a fatigue l i fe  prediction, the flow c h a r t  in F i g u r e  11 is presented.  

The example shown is f o r  a c o m -  

The techniques used  in the example can  be applied to  any loading 

F o r  a n  ove ra l l  approach  to 

Fat igue ana lys i s  - example problem. --A recommended method fo r  evalu- 

ating the fat igue life of a typical s t ruc tu ra l  component subjected to  m e c h -  

an ica l  vibrat ion is desc r ibed  in  detai l  i n  the proc2eding analysis .  

s cope  of th i s  sect ion r e q u i r e s  that assumptions b e  made  in the analysis  p e r -  

f o r m e d  to c h a r a c t e r i z e  the s t a t i c  and dynamic behavior of the s t r u c t u r a l  

component. Brief ly ,  t hese  analyses  require  a s t r u c t u r a l  idealization of the 

component in o r d e r  to predict  the s t a t i c  s t r e s s ,  the influence coefficients,  

and the m o d a l  response  of the sys t em.  

T h e  l imited 

30 



M.22527 

EXTERNAL SOUND PRESSURE LEVELS 
MEASURED ON SI/SIV INTERSTAGE FLIGHT 

LIFTOFF 7 

6 -  

ACCEPTANCE -4 

- 
5i z 
s 
ii 5 -  

FIRING 7 SEC.- 

476 SEC. 
- _-__ m 

> W A 

z 
AIR 

TRANSPORTATION 
- 4 -  -- 

TAKEOFF 0 
a 

- 5 3 -  - 4 MIN.- 

1 I I I 

POWEREC 

SONIC 
MAX. Q 
45 SEC. 

FLIGHT, 
TRAN- 

‘ I  
OVERALL SOUND PRI 

m 
> l -  

2 
E5 
4 

B 
0 

SURE LEVEL 

30 SEC. 

CRUISE 
SURFACE 12 HR. 

TRANS. 
135 MIN 

-D 

1 -  

I I  - I  -f 
130 

16 25 40 63 100 160 250 400 630 1,000 1.600 

FREQUENCY (CPSl 

Figure 9 (cont) 

M-22508 

EXAMPLE HISTOGRAM OF VIBRATION INPUT 
TO “COMPONENT X” DURING EXPECTED LIFE 

LAUNCH VEHICLE + SPACECRAFT MISSION 

jTAGE FLIGHT 

-1 MIN. 

TIME 

Figure 10 
-- 

29 



Table V 

QUALIFICATION TEST SPECIFICATION ASSUMED F O R  
EXAMPLE PROBLEM - TWO AXES (X-Y) 

Sinusoidal  Sweep 5 to 50 c p s  a t  0.160 DA 
50 to 2,000 cps a t  20.4 g ' s  
at a logarthmic sweep r a t e  of 1 min.  
p e r  octave (sweeping up and back)  
f o r  both axes  (X-Y)  

Resonance Dwell 

Random T e s t  

5 to 50 cps  at 0 . 0 8  in. DA 
50 to 2,000 a t  10 g ' s  
dwell  5 min.  at each of the  m a j o r  
resonances  f o r  each  ax i s  

2 5 to 100 cps  at psd  f r o m  0.005 g /cps  - 
0 .50  g2 /cps  
100 to 2 , 0 0 0  cps  at psd = 0.50 g 2 / c p s  
10 min.  Der ax is  

environmental  condition experienced in most  p rac t i ca l  applications. 

7 shows the va r ious  wave shapes  assoc ia ted  with the s inusoidal  sweep, 

s inusoidal  dwell, and random loads.  

F i g u r e  

The input leve ls  given in  Table  V a r e  shown plotted in F i g u r e s  12 and 13. 

The double ampli tude d isp lacement  in inches (DA) is expres sed  in t e r m s  of 

acce lera t ion  (g) by the following relationship: 

a2 (DA) 
g = 'm 

where  

o = c i r c u l a r  f requency (27rf) 

simplifying r e s u l t s  by substituting i n  the  above equation 

g = 0.0511 f2 (DA) 
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F o r  this example problem, it w i l l  be  a s s u m e d  that the qualification t e s t  s p e c -  

if ication has been selected as the c r i t i c a l  vibrational loading f o r  the component. 

T h e  qualification tes t  specification used in this n u m e r i c a l  example is shown in  

Table V. The s inusoidal-sweep loading is c h a r a c t e r i z e d  by a continu- 
ously varying excitation frequency, sweeping a broad band of f requencies  a t  

a logari thmic r a t e .  T h e  sinusoidal-dwell  loading, s i m i l a r l y  r e f e r r e d  to as  

sinusoidal resonance loading, is l imited to input f requencies  at the m a j o r  

resonant  f requencies  determined f r o m  the s i n e  sweep t e s t s .  T h e  random 

vibrat ion loading cons i s t s  of a continuous dis t r ibut ion of ampli tudes va ry ing  

in a s ta t i s t ica l  manner  a s  a function of t i m e .  Investigation of the r e s p o n s e  

because  of random loading r e q u i r e s  the vibrat ion to  be desc r ibed  in s p e c t r a l  

t e r m s .  This is accomplished by subdividing the frequency band of i n t e re s t ,  

measur ing  the mean squa re  acce le ra t ion  in each  finite band and dividing by 

the bandwidth. The function obtained when the bandwidths approach z e r o  i s  

cal led the accelerat ion power s p e c t r a l  densi ty  (PSD - g / c p s ) ,  and the plot 

of PSD ve r sus  frequency i s  r e f e r r e d  to a s  the power spec t rum.  Of the v i b r a -  

tion inputs d i scussed ,  the random vibrat ion m o r e  nea r ly  dupl icates  the actual  

2 
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Theore t i ca l  Response of S t ruc tu ra l  Component: 

F r o m  the s t a t i c  and dynamic analysis of the s t r u c t u r a l  component, the 

dynamic loads and t r ansmiss ib i l i t y  functions a r e  a s s u m e d  to have been d e t e r -  

mined f o r  this example. 

r a t io s  of the sinusoidal r e sponse  of the component to i t s  sinusoidal excitation 

e l sewhere ,  where both input and response a r e  e x p r e s s e d  in the s a m e  t e r m s .  

For the c a s e  of motion excitation, i t  is the ra t io  of the relat ive displacement  

of the sp r ing  to  the displacement  of the foundation. That is 

Briefly,  t ransmissibi l i ty  functions a re  defined as the 

- 6 s  - Relative displacement  of spr ing 
T R - F -  Displacement of foundation 

F o r  the s t r u c t u r a l  component in this example problem, the t r a n s f e r  load func-  

tions fo r  a unit acce le ra t ion  a r e  depicted in F i g u r e  14 f o r  two a x e s  of motion 

(X,  Y ) .  By multiplying the qualification t e s t  input by the calculated 

t r a n s f e r  load functions, the r e sponses  of the s t r u c t u r a l  components a r e  

determined.  

M.22503 

STEADY STATE TRANSFER FUNCTIONS 

I. FREQUENCY (CPS) 

Figure 14 
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Figure 12 
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RANDOM VI BRATION QUALl Fl CAT1 ON SPEC I FIC AT10 N 

Figure 13 
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f 
Frequency  

(CPS) 

10 

15  

20 

25 

30 

35 

40 

45  

50 

55 

60 
70 

80 

90 

Sweep 

gS 

0. 8 

1.8 

3. 2 

5 .0  

7.2 

10.0 

13.0 

16.0 

20.0 

20.0 

20 .0  

20.0 

20 .0  

20 .0  

Dwell 

gD 

0.4 

0 .9  

1. 6 
2 .5  

3.6 

5.0 

6. 5 

8. 0 

10.0 

10 .0  

10.0 

10.0 

10,o 

10 .0  

Table V I  

T ransf e r  
Function- 

lb. I g  

sX sY 

114 74 

180 86 

268 100 

136 114 

60 130 

28 144 

1 6  156 

12 166 
- -  154 

- -  132 

- -  108 

- -  40 

- -  !!I 

--  --  

Response  Loads  - lb. 

91 
3 24 

860 

680 

432 

280 

208 

192 
- -  
- -  
- -  
- -  
- -  
- -  

s Y  gs 

59 

155 

320 

570 

935 

1 , 4 4 0  

2 ,030  

2 ,660  

3 ,080  

2 ,640  

2 ,160  

80 0 

200 
- -  

'x gD 'Y gD 

28  

77 

160 

285 

46 7 

720 

1 ,015  

1 , 3 3 0  

1 ,540  

1 ,320  

1 ,080  

40 0 

100 
- -  
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Sinusoidal - sweep and sinusoidal -dwell  r e sponse  - -The theoret ical  - 
t r a n s f e r  functions given in F i g u r e  14 a r e  multiplied b y  the qualification t e s t  

inputs f o r  the s inusoidal-sweep and sinusoidal-dwell  conditions. These  

r e su l t s  a re  tabulated in Table IV and plotted in F i g u r e  15. 

Random response- -The  r e sponse  to  a random vibration input is 

obtained by multiplying the PSD's  b y  the s q u a r e  of the t r a n s f e r  function; that  is 

= PSD x ( T F ) ~  RPSD 

where  

PSD = Input power s p e c t r a l  density g 2 / c p s  

T F  = T r a n s f e r  function l b / g  
R ~ S D  = Response  power s p e c t r a l  densi ty  lb 2 / c p s  

T h e  response power s p e c t r a l  density indicates the g e n e r a l  l eve l  of vibration 

r e sponse  only through a nar row frequency band. A m o r e  useful t e r m  in  ex- 

p re s s ing  random r e s p o n s e  i s  the root mean s q u a r e  rms  value. By definition, 

the rms value is s imply the s q u a r e  root of the a r e a  under the r e s p o n s e  power 

s p e c t r a l  density c u r v e ,  where the a b s c i s s a  is e x p r e s s e d  in t e r m s  of f requency.  

Although integration procedures  may  be used to  evaluate the r m s  l eve l  of r e -  

sponse f o r  the example problem, considered i n  the ana lys i s ,  the rms l eve l  m a y  

b e  approximated by the following equation 

r m s  =,/; RpSD Af  

where 

A f  is defined a s  the frequency band a t  the half power point (i. e . ,  0. 707 

1. 
max.  RPSD 

The response power s p e c t r a l  density data fo r  thc two a x e s  of motion a r e  ca l -  

culated in Table VII. 

rms levels  a r e  a l so  indicated on this f igure.  

These data a r e  plotted in F i g u r e  16. The computed 
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f 
CPS 

10 
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!, 000 

Table VI1 

CALCULATED RESPONSE POWER SPECTRAL DENSITIES 

PSD 

g2/cps  

0.015 

0.0275 

0.0425 

3.060 

0.080 

0.100 

0.125 

0.150 

0.175 

0.200 

0.225 

0.300 

0.310 

0.425 

0.500 

I 
0.500 

sX 

lb. /g  

114 

180 

218 

136 

60 

28 

16 
12 
- -  
- -  

S 
Y 

lb. /g 

74 

86 

100 

114 

130 

144 

156 

3 66 

154 

132 

108 

40 

10 
- -  
- -  

2 
sX 

x 1 ~ - 3  

12.99 

32.40 

71.82 

18.50 

3. 60 
0. 78 

0.25 

0. 14 
- -  
-- 

2 S 
Y 

x 1 ~ - 3  

5.47 

7.39 

10.00 

12.99 

16.90 

20.73 

24.33 

27.55 

23.71 

17.42 

11.66 

1 .60  

0.10 
- -  
- -  

(RPSD)X 
2PSD = sx 

195 

89 1 
3,050 

1,110 

290 

78 

31 

21 
- -  
- -  

(RPSD)Y 
2PSD = s  

Y 

82  
20 3 

425 

780 

1 , 350 

2,075 

3 ,040  

4 ,130  

4 ,150  

3,485 

2 ,625  

480 

35 
- -  
- -  
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RANDOM RESPONSE LOAD LEVELS 
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Figure 16 
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F r o m  the qualification specification input 

T = 60 sec.  /octave 

Substituting f o r ,  n, r e su l t s  in 

n = 1 ,570  cycles 

n = 3,340 cycles 

X 

Y 

Assuming the accumulat ive damage  t h e o r y , z ”  adequate f o r  this analysis ,  N’ 
the total  damage  can be  expres sed  a s  

where  

Nx, N = Allowable number  of fatigue cycles  f r o m  the a 

cu rves  f o r  the s t ruc tu ra l  component. 
Y 

ia te  S - N  

Sinusoidal dwell--The calculation of the fatigue damage because  of a 

sinusoidal-dwell  condition is the s imples t  of the va r ious  vibrat ion envi ronments .  

Since the input loads a r e  confined to the ma jo r  resonant  f requencies  f o r  a 

specif ied t ime,  the total  number of cycles  may be cornpuced f r o m  the following 

relat ionship 

n = tin 

where  

t = T i m e  a t  m a j o r  resonant frequency ( s e c . )  

f n = Resonant frequency (cps)  

F r o m  the r e sponse  cu rve  fo r  the s t ruc tu ra l  component shown in F i g u r e  15, 

the number  of cycles  accumula ted  fo r  each axis  of motion is calculated. 

40 
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Predict ion of fatigue damage: 

Sinusoidal sweep-  -During the sinusoidal-sweep condition, the exciting 

f r equenc ie s  a r e  logari thmical ly  sweeping through all of the component resonant  

f r equenc ie s  and fatigue damage  is i n c u r r e d  by each. 

i n c u r r e d  sweeping through a m a j o r  resonant  f requency is g r e a t  r e l a t ive  to 

o the r  resonant f r equenc ie s ,  s o  that damage  need only b e  evaluated f o r  the 

m a j o r  resonant frequency. 

However,  the d a m a g e  

As the varying excitation frequency approaches o r  r e c e d e s  f r o m  the resonant  

f requency,  cycles of load occur  that a r e  l e s s  than the maximum and yet g r e a t  

enough to cause s o m e  fatigue damage.  

sponse  g r e a t e r  than the half-power points (i. e . ,  0. 707 Smax) needs to be  

evaluated, s ince  th i s  l eve l  accounts f o r  approximately 97% of the damage  

(Refe rence  22). T h e  number  of cycles ,  n,  accumulated during a loga r i thmic  

sweep (up and back) between the half-power point a t  resonance  may  b e  ex -  

p r e s s e d  by the following relat ionship (Reference 38).  

T o  evaluate this effect, only the r e -  

2T f n  

x - 2 -  
( fn  t 0.5 A f )  

I n  f - 0. 5 A f )  n 
n =  

where 

T = Sec. /octave 

f = Major resonant f requency 

bf = Bandwidth at resonance  

n 

The cycles  accumulated by the s t r u c t u r a l  component a r e  calculated below. 

F r o m  the response load c u r v e s  in F i g u r e  1 5 ,  

Resonant f requency = fnx = 21 c p s  

Resonant f requency = f n y  = 50 c p s  

Half -Power Point  = 0.707 Sxmaxo = 647 lb. 

= 2, 180 lb. Half -Power Point  - - 0.707 SymaX, 

(7) 
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F r o m  the predicted and calculated response  c u r v e  shown in F i g u r e  16, the 

number  of load cycles  f o r  each  ax is  of motion of the s t ruc tu ra l  component is 

calculated 

where  

t = t = 10 x 60 = 600 sec.  
X Y  

= 20 cps  
f "X 

= 47.5  cps 
Y 

f n 

This r e su l t s  in  

n = 12,000 cycles  
X 

n = 28,500 cycles  
Y 

The accumulated fatigue damage is given as  

=Cff ; Dr 
X X Y 

Dr 

T h e  total  fatigue damage  f o r  the three  cyclic loading conditions of vibrat ion is 

a s s e s s e d  by accumulat ing the damage  associated with each. That  is 

D = Ds t Dd t Dr 
X 

X x X 

D = D  + D d  t D r  
Y 

S 
Y Y Y 

Assuming that the appropr i a t e  S-N curves  have been genera ted  f o r  the cycl ic  

conditions of s inusoidal  sweep, sinusoidal dwell and random loads,  accounting 

f o r  such  p a r a m e t e r s  as s t r e s s  concentration, s t r e s s  ra t ios ,  and t e m p e r a t u r e ,  

the fat igue l i fe  of the s t ruc tu ra l  component in the example  problem can  b e  

evaluated. I t  is well  known, however ,  that  l i t t l e  o r  no tes t  data  exis t  to d e -  

velop S - N  c u r v e s  based  upon varying load intensit ies such  as the s inusoidal  

42 



F r o m  the cu rve  

f = 21 c p s  

f n 

nX 

= 50 c p s  
Y 

and 

= t = 5 x 60 = 300 sec .  
t X Y 

substi tuting these values into the relat ionship (n = tfn) r e s u l t s  in 

n = 6,300 cycles  

n = 15,000 cycles  

X 

Y 

the  accumulated damage is e x p r e s s e d  as 

Random te s t -  -Because the fatigue damage fo r  the random loading 

o c c u r s  a t  each resonance frequency f o r  the fu l l  durat ion of the specified 

environment ,  the probabili ty of o c c u r r e n c e  of r e sonan t  peaks is c h a r a c t e r i z e d  

f r o m  a s ta t i s t ica l  approach,  w h e r e  the damaging potential i s  r e l a t ed  to  the 

r m s  response.  

T h e  number of cycles ,  n, occu r r ing  during the random-loading environment 

is conservatively e s t ima ted  to  be 

t n n =  

where  

t = total  durat ion of loading 

fn = calculated resonant  f requency 
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M-22497 
PARABOLIC RESPONSE CURVE FOR 
SINE SWEEP DAMAGE SIMULATION 

A 
p4 = .857 P 

I h_ p5=.763P, 

f n  

FREQUENCY. CPS 

Figure 17 

T h e  damage  resul t ing f r o m  a m a j o r  resonant sweep is given by 

where  

N (Pi) is defined by the constant amplitude load S-N curve.  

Lett ing 

Ni = N (Pi) 

Ns = 5 p  i= 1 4 
44 



s w e e p  and random vibrational loadings. F o r  convenience,  l abo ra to ry  t e s t s  

on fatigue coupons a r e  normal ly  conducted under  repeated loads with d i s c r e t e  

s t r e s s  levels  and s t r e s s  ranges.  T h e  r e a s o n  is appa ren t  when one cons ide r s  

the difficulty and cost  i n  conducting coupon t e s t s  using nondiscrete  loadings.  

A recommended analytical  technique f o r  establishing S - N  c u r v e s  f o r  the sweep 

and random vibrational loading based upon a n  equivalency with the s t anda rd ,  

constant amplitude S-N t e s t  da t a  is desc r ibed  in the following section. 

analyt ical  technique is based  upon the method developed in References  22 

and 39. 

T h e  

Equivalent S-N c u r v e s  : 

Sinusoidal sweep--As d i scussed  previously,  the damage suffered by 

sweeping through a m a j o r  resonant  frequency, compared  with other  resonant  
f r equenc ie s ,  is a s s e s s e d  only f o r  the load l eve l  exceeding the half-power 

point. T h e  predicted damage ,  sweeping through the defined bandwidth, is 

evaluated by dividing the bandwidth into ten equal i n t e rva l s  and summing the 

damage  associated with each load level ,  based  upon the constant ampli tude 

S - N  cu rve ,  Th i s  technique is d e s c r i b e d  in  detai l  i n  the proceeding ana lyses .  

Assuming a parabol ic  response  c u r v e  f o r  the s inusoidal  loading, as shown i n  

F i g u r e  17, the damage is evaluated for the loads exceeding the half-power 

point, 

w h e r e  

P1 = 0 . 9 9 7 P a  

p 2  = 0.974 Pa 

Pq = 0.857 Pa 

P 5  = 0.743 Pa 
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This probabi l i ty  densi ty  equation is plotted in  F i g u r e  18. 

The  evaluation of the probabili ty of occur rence  f o r  (Xo 5 X 5 X, t AX) is  

then defined as  

where nr  is the total  number of random occurrences .  

The above equation is evaluated and plotted in F igu re  19. F r o m  the 

f igure,  the probabili ty of the peak load exceeding the  rms load is 60.6570, 
whereas  the probabili ty of the peak load > 2 rms is approximately 1370. 

Because  the occur rence  of peakloads  i n a  random p r o c e s s  i s  s t a t i s t i ca l  i n n a t u r e  

and re la ted  to the rms load, fatigue damage can be calculated f r o m  the 

following equation 

P (x) dx n 
- 

Dr - i f = n r  r J’ NTx) 
0 

In  t e r m s  of the equivalent random cycles  (N,), the  equation is e x p r e s s e d  a s  

o r  
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Assuming that a n  appropr i a t e  constant ampli tude (dwell) S-N c u r v e  defining 

the m a t e r i a l  c h a r a c t e r i s t i c s  of the example s t r u c t u r a l  component is established, 

the equation is evaluated as shown in  Table VIII. 

cu rve  and the tabulated r e s u l t s  f r o m  Table  VI11 a re  shown in F i g u r e  20. 
The calculated dwell  S-N 

p4 

686 
1,371 

1,885 

3,428 

Random S - N  c u r v e s  --Since the r e sponse  of a single d e g r e e  of f reedom 

s y s t e m  to random vibration is desc r ibed  as  a random sine wave, the proba-  

bil i ty of peak loads or s t r e s s e s  within a n a r r o w  frequency band can  be predicted 

closely by a Rayleigh probabili ty density distribution. 

of the random vibration response,  as d i scussed  previously,  is r e l a t ed  t o  the 

rms value. 

T h e  damaging potential  

N1 N 2  

p5 X 1 6 j  xlb 3 

610 260 280 

1,221 29 31 

1,678 1 5  16 
3,052 4 5 

T h e  probabili ty of peak response  from the Rayleigh equation is given as 

779 

1,558 

2,142 

3,896 

2 
P ( x )  = x e  -2 -X 

742 

1,483 

2,039 

3,708 

where  

800 

1,600 

2,200 

4,000 

789 

1,595 

2,193 

3,988 
- 

P e a k  Load x =  rms Load 

Table VI11 

EQUIVALENT SINUSOIDAL-SWEEP S-N DATA 

p2 1 p3 
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The above equation is numer ica l ly  integrated in Table  IX fo r  one point on  the 

random S-N cu rve  by  assuming that 

-1 x2 

Nr = [I xe Nz)Ax] 
where  

N (x) is defined by the dwell  S-N cu rve  f o r  the s t ruc tu ra l  component 

as given in  F i g u r e  20. 

Other  points w e r e  calculated to  establish the S-N c u r v e  shown in F i g u r e  20, 

but they a re  not tabulated in  the table, 

Table IX 

(RMS LOAD = 800 lb.)  
EXAMPLE CALCULATION O F  RANDOM S-N CURVE - 

X 
~ 

0.60 

0.80 

1.00 

1.20 

1.40 

1.60 

1.80 

2.0 

2.2 

-x2 
2 

xe 

0. 501 

0. 581 

0.606 

0.584 

0. 525 

0 ,445  

0.356 

0.271 

0.196 

P e a k  
Load 
(1b. 1 

580 

640 

800 

960 

1 ,120  

1 ,280  

1,440 

1 ,600  

1 , 7 6 0  

20.00 

5.40 

2. 60 

1. 30 

0.76 

0.48 

0. 36 

0. 28 

0.23 

3 

11 

23 

45 

69 
93  

99 

97 

85 

- 

X - 
2.4 

2.6 

2.8 

3.0 

3 . 2  

3.4 

3.6 

- 

- x2 
-27 

xe 

0.135 

0.089 

0.054 

0 .033  

0.019 

0.010 

0.005 

P e a k  
Load 
(1b. ) 

1,920 

2,080 

2,240 

2 ,400  

2 ,560  

2,720 

2,880 

0.19 

0. 16 

0 .14  

0.12 

0.11 

0.09 

0 .08  

71 

55 

38 

27 

17 

11 
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RAYLEIGH DENSITY 
DISTRIBUTION OF 
PEAK RESPONSES 
FOR RANDOM 
VI  BRAT IONS 

Figure 18 

M 22506 

RAY LEIGH 
PROBABILITY OF 
PEAK LOADS 
EXCEEDING THE 
RMS VALUE 

PEAK LOAD 
'= RMS LOAD 

Figure 19 
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The a s s e s s e d  constant amplitude load (dwell) S-N curve  in F i g u r e  20 de-  

sc r ibes  the m a t e r i a l  fatigue charac te r i s t ics  f o r  one axis  of motion. F o r  two 

axes  of motion, the fatigue charac te r i s t ics  m a y  be  different and may r e q u i r e  

two S-N curves  to  r e p r e s e n t  the ma te r i a l ' s  fatigue l ife ( see  Appendix G). 

F o r  this numer i ca l  problem, the simplifying assumpt ion  is made  that the d e -  

picted S-N cu rve  is adequate f o r  both axes of motion and that the total  accumu-  

la ted damage  f o r  the s t ruc tu ra l  component m a y  b e  expres sed  as 

D = D x t D  
Y 

l or 

(26 )  RY 
D = D  3. D t DDx t D t DRx t D  

sx SY DY 

T h e  damage  equations a r e  m o s t  conveniently used  to evaluate the fatigue life of 
a s t r u c t u r a l  component by present ing the resu l t s  i n  the f o r m  of a life-block 

curve,  

where  

1 life block = 

One life block m a y  be  defined as one completed qualification t e s t  specification 

h is tory  on the component. 

m u s t  withstand a m-inimum of 3ne l i fe  block under  these  conditions without ex- 
periencing fatigue fa i lure .  

T o  show sat isfactory fatigue life, the  component 

A sketch of this  cu rve  is depicted in F i g u r e  21- 

The calculated l ife blocks for  the s t ruc tura l  component is tabulated in Table  X 

f r o m  previously r epor t ed  resu l t s .  

loads both g r e a t e r  than and l e s s  than the original qualification t e s t  loading. 

Additional calculations a r e  made  f o r  
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1 
- 

NR - - = 6 . 6 6  x 10 ; c= 7 5 0 ~  I O e 7  
2 

-X 

xe  T 
Ax c No 

M-22507 

S-N CURVES FOR EXAMPLE COMPONENT 

N-CY CLES 
Figure 20 

Fatigue life: 

The fatigue life of the s t r u c t u r a l  component may now be predic ted  by 

It  was shown that the to t a l  combining the appropr ia te  damage  equat ions.  

damage  f o r  the two axes of motion may be e x p r e s s e d  a s  

X 
' DR x -t DD = D  

S 
X 

Dx 

and 

49 



z 

0 0 0 0 0 3 0  
9 9 0 3 c o o o .  
c - d O o O N *  .. 2 ;  m 

m 0 c- 
Q) In 0 

0 0 0 0 0 0  

0 0 0 0  0 

0 0 0 0  0 

--___. -_ 
I n m a *  In 

N N r n  

0 0 0 0 0 0  
c - * o o o o  
I n m m o o *  

E 
4 0 
r( a c ; cd n d 

* 
0 * 
4 w 
ni 

I I  

0 * 
0 

4 

w 
ni 

II 

N 
03 
Q) 

ij 
II 

4 

n 

Q) 
M 
cd 
E 
G 

52 



M.22488 
. RELATIVE LOAD VS NO. OF LIFE BLOCKS 

(EXAMPLE PROBLEM) 

X-CALCULATED 

w 

.lo .2 .4 .6 .8 1.0 

NUMBER OF LIFE BLOCKS 

3 

Figure 21 

51 



CONCLUSIONS 

Initial fatigue design guides for space  vehicle s t r u c t u r e s ,  based  on ac tua l  

design exper iences ,  a r e  summar ized  in  the  following l ist :  

1 .  Launch vehicle s t r u c t u r e  and spacecraf t  s t r u c t u r e  should be  
examined in  the e a r l y  design s tage  to de t e rmine  the probabi l i ty  of 
the  occur rence  of s t r u c t u r a l  fatigue. 

Fu l l - sca l e  t e s t  a r t i c l e s  o r  components of space  vehicle  s y s t e m s  
should be  subjected to rigid qualification t e s t s  ( s ee ,  for  example,  
Reference 33) .  If such t e s t s  revea l  marg ina l  o r  suspec t  des igns ,  
an  evaluation of the t e s t  r e su l t s  should be supplemented with 
ana lys i s .  

It should be  shown by ana lys i s  that  fatigue damage  incu r red  during 
acceptance testing on fu l l - sca le  o r  component p a r t s  of ac tua l  space  
vehicle  s y s t e m s  w i l l  not adve r se ly  affect the success  of a subsequent  
miss ion .  

The space  vehicle  sys t em flight a r t i c l e  o r  i t s  components mus t  with- 
stand, without fa i lure ,  the load frequency in te rva ls  and load s p e c t r a  
to which i t  (o r  they) will be  subjected during operat ion.  At p re sen t ,  
the s t r u c t u r e  appea r s  to be m o r e  suscept ible  to fatigue during launch. 
S t ruc tu re  designed to withstand boost environments  will,  i n  all l ikel i -  
hood, be  acceptable  f o r  the infrequent loading imposed  by the space  
environment.  

Under the operat ing conditions s ta ted  in I tem 4, and with lightweight 
design as a goal, the p re sen t  fail-safe ( f r ac tu re - sa fe )  design may  
have to be d ra s t i ca l ly  a l t e r ed  f o r  spacecraf t  s t ruc tu re .  
ab le  flaw o r  c r a c k  s i z e s  will  have to be defined in  the e a r l y  design 
s tage.  

The s imultaneous act ion of fatigue and the g r e a t  range  of space  en -  
v i ronments  h a s  va r i ed  e f f ec t s  on meta ls  and s t ruc tu res .  These  
effects m u s t  be  cons idered  in the design of s t ruc tu re .  Although 
exper ience  in  the  design of space  vehicle s y s t e m s  is re la t ive ly  
l imi ted ,  sufficient knowledge does ex is t  to produce safe  vehicles .  

2. 

3. 

4. 

5. 

The t o l e r -  

6. 
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.curves of F i g u r e  A.1. 

i z e d  as !/w, where ! is  c r a c k  length and w is s p e c i m e n  width. 

u is equal to n/N. 

is the c r i t i c a l  c r a c k  length. 

damage  r a t io  f o r  all of the damage  curves a s soc ia t ed  with the var ious load 

l eve l s  within the block. 

s o  the Xl is the s lope of the i th damage  curve. 

weighted a v e r a g e  s lope of all the damage  cu rves  a t  any given value of X. T h e  

weighting is done according to the percentage of the block devoted to each load 

leve l ,  Thus,  

Thus,  X i s  the damage r a t io ,  which can  b e s t  be  visual-  

T h e  cycle  r a t i o  

T h e  c r i t i ca l  damage ratio is X,, equal  to  8,/W, where fc 
T h e  symbol  Xcm denotes the min imum c r i t i c a l  

T h e  p r i m e  denotes differentiation with r e spec t  to u, 

T h e  symbol  (X) denotes the 
1 

m 

i= 1 

where  r.  is the r a t io  of the number  of cycle r a t io s  a t  the i th load level  to the 

to ta l  number  of cycle r a t io s  in  the block. 
1 

1 .o 

PHYSICAL x 
DAMAGE 

DAMAGE CURVES 

1 .o 0 
u =LL 

N 

M-22511 

:1 

Figure A1 
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APPENDIX A 

CUMULATIVE FATIGUE DAMAGE ANALYSIS FOR 
LABORATORY SPECTRUM LOAD TESTS 

n T h e  cumulative fatigue damage concept, En, originally fo rmula t ed  

that damage accumulated a t  a l i nea r  ra te .  

proven f a l se  many t imes .  

by fatigue action p r o g r e s s e s  a t  a n  exponential r a t e  similar to  the r a t e  of 

fa t igue c rack  growth. 

intermit tent  high tensi le  o r  c o m p r e s s i v e  loads,  have been  shown to  g rea t ly  

a l t e r  nominal fatigue l i ves ,  

suggested 

Since i t s  conception, th i s  has been  

It is now known that physical  damage  to s t r u c t u r e  

Also the effects of p r i o r  h i s to ry ,  such  as the effects of 

Based  on these observat ions,  modifications have been  made to the fatigue 

damage  rule which a r e  quite general .  

used  in the fatigue analysis  of s p e c t r u m  loaded s t r u c t u r e  in  the l abora to ry  and 

h a s  been quite successful .  

T h e  method to be p resen ted  has been  

The Mean Damage Rate  Method (Reference 4 )  

A s imple  mathematical  expres s ion  has  been found whereby the value of x n / N  

can  b e  computed f o r  s p e c t r u m  loadings when c e r t a i n  conditions a r e  m e t .  

T h e s e  conditions a r e  as follows: 

1. The nonlinear damage c u r v e s  a r e  known as functions of the c y c l e  
ratio and the p r i o r  his tory.  

The loading h i s to ry  is a per iodic  function of t ime.  
o r  block, the load levels  a s s u m e  a c e r t a i n  pa t t e rn  which is r epea ted  
in  each subsequent block. 

The number  of cycles  p e r  block is small compared  to the to ta l  life. 

2. Within a pe r iod  

3. 

Under these assumptions,  the cumulative cycle  r a t io  is given by 

T h e  derivation of this expres s ion  is given i n  R e f e r e n c e  4. 

the symbols are  m o s t  ea s i ly  understood through r e f e r e n c e  to the damage  

T h e  meanings of 
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M-22498 s!! FOR SPECTRUM LOADINGS BASED ON 
N HENRY'S EQUATION MODIFIED* 

b l  

Figure A2 

Example computation by mean  damage r a t e  method.  --Given a spec t rum con- 

s i s t ing  of cycle  blocks defined by the following table.  The maximum s t r e s s ,  

the endurance l imit ,  the number  of cycles p e r  block, the life, and the c r i t i ca l  

c r a c k  length for  each s t r e s s  leve l  a r e  a s sumed  to be known. 

is  c a r r i e d  out using Henry ' s  constant  a s  K = E/(S-E).  
The calculation 

HENRY'S EQUATION MODIFIED 

Henry  (Reference  27) has given the equation 

/ N  D =  
l + K  ( l - n / N )  

(5) 

as the  equation of the damage  curve ,  where K = E/(S-E),  S = maximum s t r e s s ,  

and E = a n  endurance  l imi t  s t r e s s .  
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T h e  integration indicated in  Equation 1 can b e  per formed graphically,  n u m e r -  

ically,  o r ,  when the damage  cu rves  a r e  given by integrable  mathemat ica l  ex- 

p res s ions ,  directly.  In Reference  4, this integrat ion h a s  been  per formed 

d i r ec t ly  f o r  curves  corresponding to a modification of Henry ' s  f o r m u l a  f o r  

damage  propagation. 

. 

I 

T h e  limiting value of x n / N  f o r  s p e c t r u m  loadings,  according to Henry ' s  

fo rmula ,  can be  obtained by substi tuting Equation (6)  into the m e a n  damage  

r a t e  formula (Equation 1). 

Reference  4. 

a function of the p a r a m e t e r s  involved. 

follows. 

Th i s  manipulation is p e r f o r m e d  i n  Appendix A of 

The  r e su l t  is s u m m a r i z e d  in  F i g u r e  A2, which gives n /N as 

An example of the u s e  of this f i gu re  

If o the r  formulas  f o r  damage propagation should t u r n  out to b e  m o r e  sui table  

than Henry 's ,  they can  b e  substi tuted into Equation 1 to  give new expres s ions  

f o r  x n / N .  T h e r e f o r e ,  the m e a n  d a m a g e  r a t e  f o r m u l a  is quite gene ra l .  

~ ~ - 

T h e  formula  corresponding to Henry 'e  damage w a s  used to calculate  the value 
of z n / N  fo r  vanishing block s i z e  for the s a m e  numer ica l  values used in  the 
digital  computer  calculation, p re sen ted  in F i g u r e  66 of Reference  4. 

f o r m u l a  gives x n / N  = 0. 730, which a g r e e s  with the digital  computation as 
AncO. 

T h e  

F o r  continuous spec t r a ,  the summation of Equation 2 m u s t  be replaced by a n  

integrat ion a s  follows: 

x' (X)  = 1 r (a) X '  (a) do 
-00 

where a is an environmental  p a r a m e t e r ,  and r (a) is a probabili ty density 

distribution having the p rope r t i e s  
I 

( 3 )  

r (a) 5 1 and 
-00 

(4) 
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Table  A1 

N xc 

(cycles) 

9,000 

4,200 

2, 800 

2,200 

8, 500 

5,000 

3,500 

r =  
A U  
-6 

I 

C r i t  i ca l  
C r a c k  L. 

xC 

Max. 
S t r e s s  

s 

0.4826 

0,2588 

0.0775 

0.0122 

0.1022 

0.0434 

0.0233 

A u  = 
6 n  
T 

0.388 

0.345 

0.308 

0 .263  

0 .443  

0. 397 

0 .355  

Cycles  
-mzE- 
6n 

S t r e s s  
Level  

End 
L imi t  

E 

110,000 

110,000 

110,000 

110,000 

135,000 

E 
K ' m  

11 7,800 

132,100 

146,400 

165,900 

138,200 

152,500 

166,800 

160 

40 

8 

1 

32 

14. 1 
4.98 

3.02 

1.970 

42. 2 

7. 71 

4.25 

0.01 780 

0.00954 

0.00286 

0.00045 

0.00377 

0.00160 

0.00086 

135,000 

135,000 

1.0000 0.03688 

.L -a. 

If a l t e r e d  by p re load  effects, the d i s c r e t e  value of N may b e  obt'ained f r o m  
ad-hoc t e s t s  as shown in F i g u r e  A3. 

2 r k  S t r e s s  
Level  

1 

2 

3 

4 

5 

6 
7 

r 
l+k 

k - 
X 

r k  
l t k  

0.451 

0.215 

0.0582 

0.00810 

0.0827 

0.0384 

0.01890 

rx 
l t k  

0.0320 

0.0433 

0.01925 

0.00410 

0.001956 

0.00497 

0.00444 

0.01 241 

0.01493 

0.00594 

0.001080 

0.000866 

0.001 975 

0.001 578 

16.41 

3.10 

0.570 

0.0606 

7. 90 

0. 746 

0.226 

36.4 

14.41 

9.80 

7.49 

95.5 

19.42 

11.98 

0.0388 
(ao) 

bl = 0.0388 x 29.0 - 0. 8722 = 0. 365 

b2 = 0.0388/0.263 t 0.8723 = 1.020 

oo.cb = 0. 890 ( f rom F i g u r e  A2) 
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T h e  following modification of Henry 's  f o r m u l a  is proposed f o r  s o m e  applications:  

D / N  

C = 1 t K  ( l - " / N )  

w h e r e  Dc is the c r i t i ca l  damage,  which is the damage a t  which the p a r t  frac- 

t u r e s  completely. In Equation 5, the c r i t i ca l  damage  is unity. 

6,  the damage cu rves  tend to have the c h a r a c t e r  shown in  F i g u r e  A l .  
c u r v e s  for  high s t r e s s  tend to have less c u r v a t u r e  and a lower value of c r i t i c a l  

d a m a g e  (c r i t i ca l  c r a c k  length) than the c u r v e s  f o r  low stress.  

With Equation 

T h e  

F i g u r e  A3 shows the fatigue r e su l t s  of p r i o r  loaded l abora to ry  spec imens  by  

both tension and compress ion  p r e s t r a i n s .  

the maximum cycling load in  the fatigue tes t ,  a n  i ,mprovement in life is observed.  

If the p r i o r  preload is compress ion ,  a reduction in  ove ra l l  l ife occur s .  

footnote in Table  A l .  ) 

If the preload is tension and exceeds 

(See 

IRD951A 

EFFECT OF PRIOR PRELOAD 
(REFERENCE 21) 

CYCLES TO FAILURE 

Fieure A3 



F i g u r e  B1 shows fat igue-crack growth cha rac t e r i s t i c s  as a function of environ-  

men ta l  t empera tu re .  

ducing cracking  a r e  the s a m e  f o r  all t e s t  t e m p e r a t u r e s  noted. 

dist inctive cha rac t e r i s t i c s  a r e  evident in this f igure.  

that  the fatigue l i f e  i n c r e a s e s  a s  the t empera tu re  d e c r e a s e s .  It a l so  il- 

lu s t r a t e s  a reduction in the c r i t i ca l  f law size o r  c r a c k  length that can  be 

to le ra ted  as the t e m p e r a t u r e  of a m e t a l  d e c r e a s e s .  

as the t e m p e r a t u r e  d e c r e a s e s  the c r a c k  nucleation period o r  t i m e  to produce 

an  obse rvab le  c r a c k  i n c r e a s e s .  Conversely,  as t e m p e r a t u r e  d e c r e a s e s ,  the 

per iod of observable  fatigue c r a c k  growth d e c r e a s e s .  

In this d i ag ram,  the s t r e s s  range  and s t r e s s  l eve l  p r o -  

S e v e r a l  

The d i a g r a m  shows 

It a l so  indicates that  

F i g u r e  B2 shows exper imenta l  r e su l t s  of a study of c r a c k  growth under  s teady-  

s t a t e  loading conditions and at elevated t empera tu res .  

cracks w e r e  grown i n  6-in. -wide aluminum panels.  

held under  constant loads and t empera tu res .  Within a few hour s ,  c r e e p  

c racking  had  advanced to  a c r i t i ca l  s tage.  Although the t e m p e r a t u r e  leve l  

used  i n  the expe r imen t s  w a s  higher than the useful t e m p e r a t u r e  of the m a t e r i a l ,  

i t  should b e  rea l ized  that the s a m e  phenomenon could occur  a round 2 0 0 ° F  

( so la r  radiat ion)  and  probably in fewer  than 10, 000 h o u r s  (long-operational 

spacecraf t ) .  

In these  t e s t s ,  fatigue 

T h e  panels w e r e  then 

F i g u r e s  B 3  and B4 show fatigue t e s t  resu l t s  as dependent on tes t  t empera tu re .  

In these  i l lus t ra t ions  the total  number  of cycles- to-rupture  as a function of 

the var ious tes t  s t r e s s  levels  are shown. The  total  l i fe  includes the combined 

c r a c k  nucleation per iod  and the fat igue-crack propagation period. 

The  r a t e  of f a t igue -c rack  propagation as affected by r a t e  of cycl ic  loading and 

tes t - load f requency  is an  additional p a r a m e t e r  to b e  considered.  In elevated- 

t e m p e r a t u r e  fatigue tes t ing,  i t  is known that the number  of cycles  to f r a c t u r e  

d e c r e a s e s ,  and the c rack -g rowth  r a t e  i nc reases  as the speed  o r  f requency  of 

cycl ic  loads is d e c r e a s e d  ( F i g u r e  BS). The damaging,  t he rma l ly  activated 

mechan i sm of c r e e p  o r  c r e e p  cracking,  acting conjointly with fatigue,  is r e -  

sponsible  f o r  this behavior.  In general ,  this is t r u e  because ,  in  the accumula-  

tion of s t r e s s  cyc les ,  s lower  r a t e s  of load cycling resu l t  in exposure  of the 

metal to t e m p e r a t u r e  fo r  longer per iods of t ime  than in  high-speed t e s t s .  - 
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APPENDIX B 

ENVIRONMENTAL E F F E C T S  ON THE FATIGUE 
STRENGTH OF STRUCTURE 

Phenomena such as fatigue, c r eep ,  s t r e s s  co r ros ion ,  embr i t t l emen t ,  and 

delayed f r ac tu re  ( s t a t i c  fatigue), acting alone o r  in combination, a r e  all 

damaging to  s t ruc tu ra l  ma te r i a l s .  The damaging effect of each of t h e s e  

environments on s t r u c t u r e  i s  not single-valued but will v a r y  as  often as  the 

conditions of s e r v i c e  a r e  a l t e r ed .  

of environmental  effects ex t remely  difficult. 

effects  on s t ruc tu re  can  be made  by ca re fu l  s imulat ion of the environment  during 

t e s t s .  However, such  s imulat ion often is a difficult and cost ly  approach  to  

the solution of the problem, F o r  th i s  r eason ,  acce le ra t ed  t e s t  methods a re  

constantly being sought. 

t e s t  technique yet devised will accu ra t e ly  predict  the "time" r equ i r ed  to 

r e a c h  c r i t i ca l  cracking o r  c r i t i c a l  damage  in s t r u c t u r e .  

damaging effect of fatigue in s t r u c t u r e  was r epor t ed  as e a r l y  as 1829. 

that t ime,  a g r e a t  amount of r e s e a r c h  and p r o g r e s s  h a s  been  m a d e .  

need le s s  to i t emize  the s u c c e s s e s  and f a i l u r e s  in controll ing this phenomenon 

s i n c e  they a r e  wel l  known. However,  many f a i lu re s  i n  the predict ions f o r  be -  

havior  c a n  probably b e  at t r ibuted to inadequate t e s t  evaluation methods,  many 

of which a r e  s t i l l  i n  u s e  today. F o r  example,  the u s e  of high speed  tes t ing 

machines  to evaluate fatigue r e s i s t a n c e  a t  elevated t e m p e r a t u r e  and in  oxi- 

dizing a tmospheres  w i l l  yield invalid da t a  f o r  p a r t s  designed f o r  low s t r a i n  

r a t e s  

This  m a k e s  calculations f o r  the predict ion 

Meaningful evaluations of the 

Histor ical ly ,  i t  c an  be shown that no a c c e l e r a t e d  

Concern  f o r  the 

Since 

It is 

It is not the purpose of this appendix to r ecommend  acceptable  analytic o r  t e s t  

evaluation methods,  n o r  is i t  the  purpose  to  d i s c u s s  t h e i r  l imitat ions,  

purpose  is to i l l u s t r a t e  the effects of a v a r i e t y  of environments .  

a c t e r i s t i c  e f fec ts  of many environments  a r e  not w e l l  known to  the a v e r a g e  

s t r u c t u r a l  des igne r ,  but this knowledge is both useful  and n e c e s s a r y  i f  s a f e  

s t r u c t u r e s  a r e  to be designed. 

define some of the m o r e  per t inent  fa t igue c h a r a c t e r i s t i c s  of metals and m e t a l  

s t r u c t u r e s  

T h e  

T h e  char- 

T h e  following d i scuss ions  and i l l u s t r a t ions  
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FATIGUE LIFE AS A FUNCTION OF TEST TEMPERATURE 
(TYPICAL FOR MOST METALS) 
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Figure 63 

IRD-954A 

EFFECT OF TEMPERATURE 

Fieure B4 
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IRD.987A 

GROWTH OF FATIGUE CRACKS AS A 
FUNCTION OF TEMPERATURE (SCHEMATIC) 

STARTER 
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Fieure B1 

GROWTH OF CRACK UNDER STEADY 
LOAD AND TEMPERATURE 

M. 14657A 

CRACK LENGTH (IN.) 

0 2 4 6 8 1 0  2 4 6 8 100 2 4 6 8 1000 
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Figure 02 
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M-22530 

C-B FATIGUE DIAGRAM 

UNNOTCHED So816 AT 1,35OoF (SIN U SO1 DAL 
SPECIMENS F = 3.600 CYCLES/MIN LOADING WAVE) 

MIN, STRESS --- 0.2% CREEP (STATIC CREEP AT R = 1.0) 
-FATIGUE FAILURE (STATIC RUPTURE AT R = 1.0) = MAX. STRESS 

MIN. STRESS - KSI - 

Figure 66 

f o r  fa t igue rup tu re  and the dashed cu rves  a re  constant life l i nes  f o r  0.270 
deformation. 

S-816 al loy a t  1350°F. 

a t  all R r a t i o s  h ighe r  than -0. 3, and fatigue c r i t i c a l  only a t  R r a t io s  l e s s  

than -0. 3. 

F i g u r e  B6 gives the fatigue f a i l u r e  and deformation da ta  f o r  

T h e  alloy is s e e n  to  be  deformation c r i t i c a l  at 1350°F 

I t  is c l e a r  f r o m  F i g u r e  B6 that des igne r s  cannot b e  guided by fat igue f a i l u r e  

d a t a  a lone  in  making a judgment about the useful life of a s t r u c t u r e  when that 

s t r u c t u r e  is subject to loading a t  elevated t e m p e r a t u r e .  

F a t i g u e  f a i l u r e  da t a  and da ta  of deformation occur r ing  under  fa t igue loading 

a re  both needed f o r  the design of s t r u c t u r e  loaded a t  elevated t e m p e r a t u r e .  

New t e s t ing  techniques are  r equ i r ed  to get t h e s e  data.  

m e n t s  wil l  have to be m a d e  during the cour se  of fatigue testing. 

to  v e r y  expensive tes t ing,  and i n  the in t e re s t  of keeping cos t  under  control  i t  

is desirable to  have  s o m e  m e a n s  of extrapolating t e s t  data.  

Deformation m e a s u r e -  

T h i s  adds UP 
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However,  f r o m  cryogenic  t e m p e r a t u r e s  to  r o o m  t empera tu re ,  no damaging, 

thermally activated mechanisms a r e  active.  It is believed that fatigue l ives  

and crack-growth r a t e s  a t  cryogenic  t e m p e r a t u r e s  w i l l  b e  independent of load 

frequency f o r  most  me ta l s .  

REF. 21 

______ 

I L I ,  

At elevated t e m p e r a t u r e  both deformation and f r a c t u r e  under  fatigue o r  s t a t i c  

loading are t i m e  dependent, and the l imitat ion on design s t r e s s e s ,  imposed  by 

deformation, becomes  significant. A consis tent  s e t  of da t a  which c a n  be used  

to show these effects is difficult to find. 

deformation data  f o r  s e v e r a l  a l loys t e s t ed  a t  high t empera tu re .  

mat ion data do not encompass  small deformations.  
sented for s-8 16 alloy a r e  sufficiently comprehens ive  to  p e r m i t  extrapolation 

to  de te rmine  approximately the s t r e s s e s  corresponding to 0 . 2 7 0  deformation. 

T h e  da ta  for fatigue f a i lu re  and the extrapolated da ta  f o r  deformat ion  w e r e  

used to construct the c u r v e  presented in  F i g u r e  B6. T h e  f i g u r e  is called a 

creep-boundary fatigue d iagram.  

Reference  28 contains fa t igue and 

The de fo r -  

However,  the data  p r e -  

T h e  sol id  c u r v e s  a r e  constant l ife l i nes  
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I w h e r e  

A H  = is  the activation energy f o r  c r e e p  o r  f o r  rup tu re  

R = is  the gas  constant 

t = is the t i m e  

T = is the t e m p e r a t u r e  in  absolute units. 

T h i s  m a s t e r  d i a g r a m  p e r m i t s  one to re la te  the t i m e  to  f a i lu re ,  f o r  example,  

a t  one s t r e s s ,  t e m p e r a t u r e ,  and R ratio to another  t e m p e r a t u r e  at the s a m e  

s t r e s s  and R ra t io .  

F i g u r e  B8 shows typical t e s t  r e s u l t s  of fatigue c r a c k  growth under  mixed load 

r anges  and c rack ing  t e m p e r a t u r e s  These  c u r v e s  show significant changes i n  

acce le ra t ion  and dece le ra t ion  of growth r a t e  as the loading conditions a r e  

a l t e r ed .  

p rog rammed  s e t  of conditions h a s  been made. 

References  30 and 31. 

loading a re  d i s c u s s e d  i n  Appendix D. 

Some s u c c e s s  in predicting the behavior  and c r a c k  length under a 

T h e  techniques can  b e  found in  

Techniques f o r  predicting c r a c k  growth under random 
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It a p p e a r s  that m a s t e r  fatigue d i a g r a m s  would be a useful m e a n s  f o r  the ex- 

t rapolat ion of da t a  over  a wider range of t e m p e r a t u r e  than would b e  used to 

obtain the data. If this technique is  successful ,  i t  would m a k e  possible  the 

gathering of da t a  f o r  a r ange  of t e m p e r a t u r e s  with a minimum of testing. 

T h e  Dorn p a r a m e t e r ,  Reference  29, h a s  been a useful co r re l a t ion  m e a n s  f o r  

re la t ing t ime and t e m p e r a t u r e  as a function of s t r e s s  f o r  s o m e  specific s t r a i n  

deformation or rupture .  

of R cu rves  f o r  fatigue rup tu re  and a second family of R c u r v e s  f o r  0.270 

deformation covering a t e m p e r a t u r e  r ange  establ ished by the extrapolation 

pe rmis s ib l e  f r o m  the r ange  of t e m p e r a t u r e s  under which t e s t s  a re  made.  

F i g u r e  B7 is a m a s t e r  d i a g r a m  f o r  0. 270 deformation. 

obtained f rom the da t a  p re sen ted  i n  F i g u r e  B6. 

Thus,  a m a s t e r  d i a g r a m  would cons i s t  of a f ami ly  

T h i s  f igu re  w a s  

Dorn ' s  p a r a m e t e r  takes  the f o r m  

AH 
8 = t e - m  

M 22512 

MASTER FATIGUE DIAGRAM S-816 ALLOY 
REF. 38 

e = te- AHIRT 

Figure B7 
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M 22516 DELAYED FRACTURE (STATIC FATIGUE) OF AIS1 4340 
STEEL IN WATER ENVIRONMENT. (PH=.5 TO 1.0) 
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It is becoming increasingly c l e a r  that the c rack-growth  per iod in  fatigue c o m -  

p r i s e s  a v e r y  large percentage of the total  fatigue l ife.  

investigations a r e  r equ i r ed  to def ine the r a t e  of c r a c k  p rogres s ion ,  s i n c e  

t h e s e  observations lead to a b e t t e r  insight concerning the p r o g r e s s  i n  the ac- 

cumulation of physical  damage.  

cepts w i l l  r e su l t  f r o m  this knowledge, and these  modifications will  r e su l t  i n  

m o r e  a c c u r a t e  predictions of s t r u c t u r a l  behaviour.  

F o r  this r eason ,  m o r e  

Improvements  to  the non-l inear  d a m a g e  con- 

T h e  complex mechanisms of delayed cracking and delayed f r a c t u r e ,  which 

occur  under  s teady s t a t e  r a t h e r  than cyclic loading conditions,  a r e  additional 

subjects  f o r  investigation. T h e  concept of a "cr i t ical  s t r a i n  l eve l ' '  f o r  design 

operat ion should be pursued,  Many of the high-strength s t e e l s  f o r  c u r r e n t  

and fu tu re  use are  par t icular ly  suscept ible  to  the phenomenon of delayed f rac-  

t u r e  in the everyday c o r r o s i v e  environment of the a tmosphere ,  

F i g u r e  B9 shows the r e s u l t s  of testing one s t e e l  alloy in a mildly s e v e r e  en -  

vironment .  It h a s  been demonst ra ted  that the f o r m  of the s t r eng th  equation, 

shown on the graph, can  b e  used  fo r  o the r  environments .  

In gene ra l ,  the fatigue l ife of a m e t a l  is longer in a n  i n e r t  a t m o s p h e r e  than 

in air .  When its action is compared  to that of i n e r t  g a s e s ,  a i r  i s  cons ide red  

to b e  a c o r r o s i v e  environment.  A d e c r e a s e  in  c o r r o s i v e n e s s  of the environ-  

ment  resu l t s  in l e s s  a t tack both on the s u r f a c e  of the m e t a l  and on the newly 

f r a c t u r e d  su r faces  generated in  the p r o c e s s  of fatigue cracking.  T h e r e f o r e ,  

the g r e a t e r  the react ivi ty  of the environment the m o r e  rapid the c r a c k  growth 

and the s h o r t e r  the fatigue life. F i g u r e  B10 and B11 show the r e l a t ive  effects 

of var ious environments on a n  aluminum and t i tanium alloy. 

In F i g u r e  B12 a r e  the da t a  f r o m  exper iments  testing the fat igue c h a r a c t e r i s t i c s  

of l o w  carbon s t e e l  mechanical ly  s t r a i n e d  within the influence of a s t r o n g  

magnet ic  field. T e s t  loading of the m e t a l  coupons under  cycl ic  conditions was 

applied in  a uniaxial spec imen d i r ec t ion  and n o r m a l  to the magnet ic  f i e ld  axis .  

P o l e s  of a 3000 gauss  permanent  magnet  enc i r c l ed  the c r i t i c a l  t e s t  sect ion of 

the coupons and provided a high intensity magnet ic  induction. T h e  fatigue l ife 

as well  as the number of s t r a i n  cycles  r equ i r ed  to  gene ra t e  a c r a c k  of a given 
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length was  found to i n c r e a s e  f o r  the f e r romagne t i c  m 3 t e r i a l  t es ted  while within 

the field. Conversely,  nonmagnetic a luminum alloy exhibited no differences 

i n  fatigue cha rac t e r i s t i c s  when tes ted either in  o r  out of the influence of the  

magnet ic  field.  

e las t ic i ty  are sugges ted  as reasons  f o r  a l ter ing m e t a l  fatigue cha rac t e r i s t i c s .  

Instead, magnet ic  induction of the s t r a i n  cycled coupons w a s  observed  to m a g -  

ne t ize  and r e t a in  the m e t a l  debr i s  genera ted  during the fatigue cracking 

p r o c e s s .  

was  shown by photoelastic techniques to  mechanical ly  reduce  the s t r e s s  i n -  

tensi ty  a t  the growing c r a c k  tip. The  reduction i n  s t r e s s  range  by this m e c h -  

a n i s m  w a s  r e spons ib l e  for i n c r e a s e s  i n  fatigue l i fe  and reductions in  c r a c k  

growth r a t e s  e 

In this  example,  nei ther  magnetos t r ic t ion  no r  magneto - 

The  d e b r i s  became wedged between the mating c r a c k  s u r f a c e s  and 

Some investigations have been made  on the effect of nuclear  i r rad ia t ion  on 

mechan ica l  fa t igue proper t ies  of m e t a l s  

usually r e f e r r e d  to as radiation damage  s ince in many c a s e s  the effects have 

been  d e t r i m e n t a l  in  one f o r m  or another .  

ducti l i ty have  been noted f o r  many m e t a l s .  

i n c r e a s e d  yield and ul t imate  yields and ul t imate  s t rengths ,  fatigue s t rength,  

and s u r f a c e  hardening a l so  have been  noted. Rotating beam fatigue t e s t s  on 

7075-T6 a luminum alloy shown i n  F i g u r e  B13 indicate  an  improvement  in l i fe  

due to the effects of a total  integrated flux of 2 ~ 1 0 ~ 8  fast n e u t r o n s / c m  ., 

Although the amount  of i r rad ia t ion  received by the spec imens  i n  these  t e s t s  is 

believed sufficient to a l t e r  mechanica l  proper t ies ,  i t  is not known if the r e -  

su i t s  are significant f o r  the cha rac t e r i s t i c s  of m e t a l s  during the conjoint 

act ion of fatigue s t ra in ing  and i r radiat ion.  

taken f o r  the s imul taneous  action of i r rad ia t ion  and mechanica l  s t ra in ing  a t  

low t e m p e r a t u r e s  

Radiation-induced changes a r e  

Damaging effects such  as loss in  

Beneficial  effects evidenced by 

2 

Additional s tudies  need to b e  under -  

I t  h a s  been  exper imenta l ly  demonst ra ted  ( see  F i g u r e  B14) that fa t igue c racking  

under  uniaxial  d i r ec t  s t r e s s i n g  of an  aluminum alloy occur s  in  h a r d  vacuum 

a l m o s t  as readi ly  as within a tmospher ic  p r e s s u r e .  

belief.  

which m a y  eventually resu l t  in cha rac t e r i s t i c s  m o r e  c r i t i ca l  than those f r o m  

i n - a i r  t e s t s .  

T h i s  is c o n t r a r y  to g e n e r a l  

Expe r imen t s  now indicate t rends  toward i n c r e a s e d  c r a c k  growth r a t e s  

Resu l t s  on aluminum continuously held in  vacuum f o r  pe r iods  
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g r e a t e r  than a week yielded d ras t i c  reductions i n  fatigue proper t ies .  

s t rongly indicates the t ime  dependency of the phenomenon. 

sho r t - t ime  t e s t  exposures  in  vacuum as shown in F i g u r e  B15 showed 

improved  proper t ies .  This is the u s u a l  accepted belief. 

c a s e s  a n  extensionof the vacuum outgas sing t ime  is m o r e  a r ea l i s t i c  environment  

than the sho r t - t ime  t e s t  exposures  previously investigated. 

anomaly,  prolonging the vacuum exposure i s  suggested a s  the only rel iable  

p rocedure  a t  p r e s e n t  fo r  evaluating meta ls  for  s e r v i c e  in the space  

envi r onment  . 

This  

Resul ts  f r o m  

However ,  fo r  many 

Because  of this  

T h e  possibil i ty of a mechan i sm which can occur  during pa r t i a l  out-gassing of 

the n a t u r a l  amorphous aluminum oxide film on the m e t a l  can  b e  proposed  to 

explain observed  differences in the sho r t - t ime  as compared  to long-time 

vacuum exposure  tes t s .  

T h e  combined effect of vacuum and high t e m p e r a t u r e  on fatigue l i fe  of a m e t a l  

is shown i n  F i g u r e  B16. In the low-cycle- to-fracture  range  the fatigue l ife is 

M.22487 

SHORT TIME VACUUM TESTS. (<20 HRS.) 
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Figure B15 
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EFFECT OF PRIOR IRRADIATION ON UNNOTCHED 
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Now, i t  is general ly  a g r e e d  that the effects of the s p a c e  environments  on 

engineering m a t e r i a l s  a r e  l a rge ly  unexplored and relat ively unknown. 

useable  mechanical  p rope r t i e s  of a metal  in s p a c e  a r e  dependent upon "time" 

during the simultaneous action of the range in  environments ,  w e  may have to 

r e ly  on l abora to ry  exper iments  conducted in  s p a c e  i t se l f  f o r  the determinat ion 

of s o m e  allowables. 

Since 
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INFLUENCE OF ATMOSPHERE ON FATIGUE LIFE 
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Figure  B16 

g r e a t e r  when tes ted in vacuum. 

reduced,  a g r e a t e r  number  of cycles  are r equ i r ed  to produce f r a c t u r e .  

i n c r e a s e  in t i m e  to f r a c t u r e  r e su l t s  i n  longer  exposure  to  vacuum, and in  this 

region the fatigue life i n  vacuum is s h o r t e r  than the l ife i n  air. 

As the s t r e s s  l eve l  o r  cycl ic  s t r a i n  r ange  is 

T h i s  

In summary ,  the p re l imina ry  r e s u l t s  of many  exper iments  have identified en- 

vironments that enhance as w e l l  as degrade  fatigue s t r eng th  p rope r t i e s .  One  

g r e a t  difficulty in  m a t e r i a l s  evaluation p r o g r a m s  h a s  been  the inability to e f -  

f ectively s imulate  the environment.  

of many m a t e r i a l  p rope r t i e s  if not adequately explored will  lead to invalid 

conclusions concerning the s t r eng th  behavior  of m e t a l s .  

r e s u l t s  have been contradictory to general ly  accepted notions. 

f e r e n c e s  may b e  at t r ibuted to d i f f e rences  in  the imposed conditions of 

lab0 ra to ry  t e s t s  

It is bel ieved that the t ime-dependency 

In s o m e  c a s e s ,  the 

T h e s e  dif- 
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APPENDIX C 

FATIGUE LIFE,  FATIGUE CRACKING AND RESIDUAL STRENGTH - - _ _ ~  -- 
O F  FLAWED STRUCTURE UNDER BIAXIAL LOADING -_ 

The ma jo r i ty  of s t r u c t u r e s  which a r e  designed,  f ab r i ca t ed ,  and operated a r e  

subject  to some degree  of multiaxial  o r  biaxial  s t r e s s i n q  while in s e r v i c e .  

Yet,  m a j o r  emphas is  in evaluating the fatigue r e s i s t a n c e  of s t r u c t u r e ,  by 

l abora to ry  tes t ,  i s  placed on uniaxial  loading methods.  

method will  i n  many c a s e s  r e s u l t  in unconservative designs aid pren ia tu re  

f a i l u r e .  

Evaluations by th i s  

T h e  fatigue of m e t a l s  under multiaxial  s t ra ining i s  a complex phenomenon. 

F a c t o r s  which have contributed to th i s  complexity a r e :  

anisotropy,  and texture  hardening of m a t e r i a l s .  The  effect of t hese  f a c t o r s  

on biaxial  fatigue p r o p e r t i e s  h a s  not been adequately investigated.  

a t  the c u r r e n t  s t a t e  of knowledge, i t  should be cautioned that the e m p i r i c a l  

c h a r a c t e r i s t i c s  defined for  one m a t e r i a l  do not n e c e s s a r i l y  apply fo r  o t h e r s .  

For example,  s o m e  m a t e r i a l s  have g r e a t e r  tensi le  s t r eng ths  i n  the longi- 

tudinal rolling direct ion;  o t h e r s  have higher s t rength in the t r a n s v e r s e  d i -  

r ec t ion .  Many of these  same m a t e r i a l s  have higher biaxial  s t r eng ths  than 

uniaxial ,  yet  when these m a t e r i a l s  contain f laws,  the uniaxial  s t r eng th  can  

be g r e a t e r  than the biaxial  s t rength.  

the s t r e s s  ra t io  of the biaxial  pr incipal  s t r a i n s .  F o r  some s t r e s s  r a t i o s  the 

max imum principal s t r a in  may be n o r m a l  to the weakes t  s t rength ax i s  of the 

m a t e r i a l .  When the s t r e s s  r a t io  is a l t e r e d ,  i t  c an  be n o r m a l  to the s t ronges t  

s t r eng th  axis of the m a t e r i a l .  

loss  in ducti l i ty,  

T h e r e f o r e ,  

A l so ,  to be cons ide red  i s  the value of 

I t  i s  the purpose of this section to i l l u s t r a t e  s o m e  fatigue c h a r a c t e r i s t i c s  of 

m e t a l s  that a r e  not well  known o r  understood In a few c a s e s  a n  a w a r e n e s s  

of t hese  ma te r i a l  p r o p e r t i e s  exis ted but w a s  neglected in des ign .  

w e r e  catastrophic .  F i g u r e s  C 1  and CZ shows biaxial  S - N  c u r v e s  f o r  two alumi- 

num alloys.  

lower fatigue allowables than unidirectional s t ra ining.  

F i g u r e  C3 i l l u s t r a t e s  the t r ends  in  fatigue c r a c k  growth as d function of 

loading. 

The  r e s u l t s  

In both examples ,  the biaxial  s t r a in ing  conditions r e su l t ed  in 

The t e s t  r e s u l t s  w e r e  obtained on the aluminum alloy 2014-T6 fo r  
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two conditions of biaxiality a s  wel l  as under  uniaxial loading. 

c r a c k  growth r a t e s  and s h o r t e r  fa t igue l ives under b iax ia l  loading a g r e e  

with the t r end  in  fatigue l ives  in  F i g u r e  C1, 

The i n c r e a s e d  

~ 

2014-T6 plates. 

uniaxial loaded p la tes  of F igu re  C3. 

and -320OF. 

Fa t igue  c r a c k s  1.8-in. long w e r e  grown in the 6-in. wide 

These  p la tes  were  then ruptured at 75O 

If the  f r a c t u r e  s t r eng ths  in  the  longitudinal and t r a n s v e r s e  

Unless  otherwise noted, the nominal maximum pr inc ipa l  s t r e s s  f o r  a l l  spec i -  

men  configurations on F i g u r e  C3 was  14,000 p s i .  The biaxially loaded p la te  

(2:l s t r e s s  field) appea r s  to have a s lower c rack  growth r a t e  than the p r e s -  

su r i zed  cyl inder  (2: 1 s t r e s s - f i e l d ) .  Th i s  is reasonable ,  s ince  the m e m b r a n e  

s t r e s s  field i n  the s imple-supported p la te  i s  var iab le  and d iminishes  a s  the 

c r a c k  extends and approaches  the edge of the plate specimen.  The nominal  

s t r e s s  field i n  the p r e s s u r i z e d  cyl inder  and uniaxially loaded p la te  on the 

o ther  hand is cons tan t .  

F i g u r e  C3 also shows the d i f fe rences  in c r a c k  growth r a t e  as  a function of 

anisotropy.  

growth occur s  when the c r a c k  is propagating no rma l  to the  m a t e r i a l  rolling 

d i rec t ion .  

appl icable  for a l l  m a t e r i a l s .  

opposi te  ru le  fo r  some t i tanium a l loys ,  

It can  be s e e n  f r o m  the f igu re  that the s lowes t  r a t e  of c r a c k  

I 

1 The r e a d e r  a g a i n  is cautioned that this  ru l e  is  not meant  to b e  

T h e r e  a r e  unpublished da ta  indicating an 

1 

Smal l  undetected and /o r  acc identa l  f l aws  c a n  promote  ca t a s t roph ic  r u p t u r e  

in  p r e s s u r e  v e s s e l s  a t  s t r e s s e s  far below des ign  l eve l s .  

s p e c t o r s  r equ i r e  knowledge concerning the s ize  of s m a l l  f l a w s ,  and the i r  

g radual  extension by fatigue ac t ion ,  that m a y  lead to instabil i ty f r o m  loads 

i n c u r r e d  by proof testing o r  in se rv i ce .  T h i s  information is n e c e s s a r y  i n  

o r d e r  to define safe  l i m i t s  fo r  the working s t r e s s e s  in  s t r u c t u r e .  

Des igne r s  and i n -  

One method 
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= length of c r a c k  
I C  

W = panel width 

1 

empir ica l  constant de t e rmined  f r o m  
t e s t  (figure C -7) 

- R - 
P 

The  f r a c t u r e  envelopes fo r  other  widths of panels  can be calculated f r o m  this 

equation by substituting appropr ia te  values  of W into the formula .  

value of R 
P 

fabr ica ted  condition. 

Good ag reemen t  between calculated and experimental  r e s u l t s  a r e  shown in 

F i g u r e  C5. 

The 
I 

r e m a i n s  constant  fo r  a given m a t e r i a l  in  a given t emper  and 

The der ivat ion of this equation i s  given in Refe rence  30. 

The equation can  a l so  be modified to pred ic t  the behavior of f lawed s t r u c t u r e  

under  biaxial loading. 

of uniaxially loaded panels  in  a width equal to the length of the cyl inder  in  

question. 

I t  i s  f i r s t  necessa ry  to calculate  the f r a c t u r e  envelope 

The f r a c t u r e  s t rength  of the cylinder is then calculated from: 

9 Kuhn (Reference  32)  

The lower  cu rve  in  F igu re  C5 has been calculated f r o m  this equation and 

shows good ag reemen t  with t e s t  da ta  on 5 in. -d i ame te r  cy l inders  20 in. long. 

Another example  of the usefulness  of this equation in design is shown in 

F i g u r e  C6. In this example,  c r acked  t e s t  panels  1 2  in. in width and of the 

s a m e  s t r u c t u r a l  configuration w e r e  ruptured in uniaxial tension. F r o m  these  data, 
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of obtaining this information in the l abora to ry  is  by ruptur ing s t r u c t u r a l  

panels  i n  var ious widths and s i z e s  and containing fatigue c r a c k s .  

F i g u r e  C5  shows the f r a c t u r e  s t rength o r  r e s i d u a l  s t r eng th  of s o m e  uniaxially 

loaded panels of a luminum alloy 2014-T6 in a va r i e ty  of widths and c r a c k  

s i zes .  Data f o r  any one panel s i ze  can be r e p r e s e n t e d  by the equation 

where  

r e  s idu a 1 s t r eng th  ( c racked)  

u It. ten s i  le s t r eng th  (unc r acked) 

M- 18286A 
PREDICTION OF FRACTURE STRENGTH OF 

FLAWED STRUCTURE UNDER BIAXIAL LOADING 

Figure C5 
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M.22496 

NOTCH 
RESISTANCE AS 
A FUNCTION OF 
MATER I AL 
DUCTILITY 
(FOR FATIGUE 
CRACKED 
STRUCTURE) 
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Rp, PLASTIC ZONE NOTCH RESISTANCE FACTOR 

Figure C7 
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M-182aaA S-IV B HYDROSTATIC BURST 
TEST SPECIMEN 

= 1.3 FROM FIGURE C 7  

._ 
FLAW sizE OR CRACK (IN.) 

Figure C6 

the  f rac ture  envelope fo r  a 660-in. -long cylinder was  calculated and then 

modified f o r  biaxial  loads and radius  of cu rva tu re  effects with Kuhn's 

cor rec t ion  factor  (Reference  32). 

Nominal values of (T 

t e s t s  of weld me ta l  p roper t ies  because  f r a c t u r e  init iated at a flaw in the 

weld seam. The hoop s t r e s s  a t  b u r s t  fo r  the 130-in.-radius v e s s e l  was 13,000 

psi. 

c r i t i ca l  flaw s i ze  of 4 in. 

a f l a w  ( t e rmed  incomplete fusion) in the weld s e a m  ove r  3-1 /4  in. in length. 

Such close ag reemen t  between actual  and predicted behavior suggests  that  the 

analysis  method can be used  in design. 

to the designer  would be the r a t e  of growth of such flaws with p r e s s u r e  cyc le s .  

The  dec rease  i n  s t rength of p r e s s u r e  v e s s e l s  f r o m  cycling i n  operat ion could 

then be  expressed  as shown in F i g u r e  G-1 of Appendix C .  

and R 
U P 

used in the equation were  obtained f r o m  coupon 

The predicted f r ac tu re  envelope in F i g u r e  C6 at this  s t r e s s  defines a 

P o s t - t e s t  examinat ion of the f r a c t u r e d  tank revea led  

Additional data  that would be useful 
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M 22518 

SINUSOIDAL AND RANDOM SN DATA 

ALTERNATING STRESS (KSI) 

DATA FROM A A M  
60 i 

\ I REFERENCE 

MEAN SN CURVE 

~~ 

MIN. 
SN 

CURVE 

I 

\ I REFERENCE 

MEAN SN CURVE 

MIN. \. -I 
\ I 

Q & ( T Y 8 ~ ~  o ~ R M S =  11,260 PSI 

ASINUSOIDAL CONST. AMPLITUDE (N VS. ALTERNATING U )  
L R A N W M  NOISE (N VS. RMS STRESS) 

3104 BlOS 2 6 El06 '107 
' ' O 

N. CYCLES TO FAILURE 

Figure D1 
In this  e x e r c i s e ,  a c l a s s  i n t e rva l  of one-third h a s  been  used for  the value of AX. 

Use Rayleigh probability dis t r ibut ion function for predict ion of peak s t r e s s  

proport ionment  i n  random p r o c e s s  

2 
-X z = xe 

( x) 
P 

where  

' x = ra t io  of (I peak to o R . M . S  

Then,  number  of cyc les  under  random loading, N R ,  can  be calculated f rom, 

2 
-X _ _  - 

(2) 
1 - - A x  

random load cyc le s  
to f a i lu re  

=' xe N ( s )  
1 

RR 
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APPENDIX D 

FATIGUE CHARACTERIS TICS 

UNDER RANDOM LOADING 

In th i s  section, working examples  a r e  given of acceptable  methods for  p r e -  

dicting fatigue c h a r a c t e r i s t i c s  of s t r u c t u r e  subjected to  random loads f r o m  
l abora to ry  tes t  r e s u l t s  under  sinusoidal constant amplitude loading. In the 

f i r s t  example,  fatigue l ives  of samples  under random loading a r e  calculated 

f r o m  known fatigue lives under d i s c r e t e  loading. 

then compared to experimental ly  de te rmined  l ives  under  random loading. 

Good agreement  between predicted and experimental  r e s u l t s  show the method 

to  be  sat isfactory fo r  u se  in design.  

In the second example,  a s i m i l a r  method i s  outlined f o r  the predict ion of 

fatigue c r a c k  growth under random loads.  

that  additional accuracy  in predicting fatigue life will  r e s u l t ,  

dication a t  p re sen t  f o r  the r a t e  of nonlinear damage  accumulat ion in  s t r u c t u r e  

is f r o m  the observed crack-growth cha rac t e r i s t i c s .  

should be designed to gather  th i s  information. 

f r a c t u r e  is  integrated over  small i n c r e m e n t s  of t ime to grow a c r a c k  to a 

given length,  and these i n c r e m e n t s  during c r a c k  extension a r e  successively 

added along the observed  nonlinear path of physical  damage  accumulation, 

then the calculated t ime  to  fa i lure  will be  p rec i se .  

The calculated l i ves  a r e  

By th i s  technique i t  is believed 

The  b e s t  i n -  

F u t u r e  exper iments  

Now, if the to ta l  damage  to 

Fat igue Life 

F i g u r e  D1 shows the fatigue t e s t  r e s u l t s  fo r  notched aluminum spec imens  

under  both sinusoidal constant amplitude loading and random noise .  

h a s  been taken f r o m  Reference  26.  

The d a t a  

Table D1 shows the analysis  technique for  calculating the proport ion of peak 

s t r e s s e s  experienced in a random p r o c e s s .  T h e  Rayleigh probabili ty d i s t r i -  

bution function i s  used and will  accu ra t e ly  p r e d i c t  the number of o c c u r r e n c e s  

f o r  s imple one-degree -of f reedom s y s t e m s  within relat ively nar row bands of 

load frequency. 
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where  
N = cycles  to fa i lure  under  s inusoida l  c o n s t . ,  amplitude a t  

( s )  d i sc re t e  va lues  of (x) 

A x  0.33 weighting fac tor  (choose A x  = 1 / 3  c l a s s  in te rva l )  

Table  D1 shows r e s u l t s  of the numer ica l  calculat ions which a r e  r equ i r ed  to 

pred ic t  the number of cyc les  to fa i lure  ( N  ) f o r  random load excitation. 

Two s e t s  of calculations a r e  made ,  one based  on the minimum S-N curve  and 

the o ther  on the ave rage  S-N curve  in F igu re  D1. 

Table  D2 shows the compar ison  between predic ted  and ac tua l  expe r imen ta l  

r e su l t s .  

R 

Fat igue Crack Growth 

S t ruc tu ra l  test  a r t i c l e s  may  be tes ted  to s e v e r a l  d i s c r e t e  s t r e s s  leve ls  under  

constant amplitude loading. Each  sample  i s  to be subjected to only one range  

of cycl ic  s t r e s s ing .  

t e s t s ,  corresponding to nine va lues  of (x), where  (x) equals  the r a t io  of peak 

s t r e s s  t o  root -mean-square  s t r e s s  within a cycle .  Tes t  s t r e s s  leve ls  of (x) 

f r o m  0 .67  to 3 .  3 3  m a y  be selected.  During these  t e s t s ,  the growth of the fatigue 

c r a c k  should be recorded  a s  a function of the number  of s t r e s s  cycles .  

data  a r e  i l lustrated in F igu re  D2. 

the nonlinear na ture  of damage  accumulat ion m o r e  accu ra t e ly  than the r e s u l t s  

obtained by the measu remen t  of total  number  of cyc les  to f r ac tu re .  

Nine d i s c r e t e  s t r e s s  r anges  may be chosen fo r  these  

Typical 

Exper imenta l  r e su l t s  of this kind depict  

F r o m  these  data,  fa t igue-crack  growth under  random loading then m a y  be  

I calculated i n  a manner  s i m i l a r  to that used f o r  fatigue life. 

length to the same  length of c r a c k  produced under  d i s c r e t e  loadings is  ca l cu -  

The number of 
cyc les  of random loading, nri ,  r equ i r ed  to genera te  a c r a c k  equivalent i n  

lated f rom:  
I 
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M.22523 FATIGUE CRACK GROWTH UNDER DISCRETE 
AND RANDOM CYCLIC LOADING 

.. 
N x (STRESS CYCLES) 

Figure D2 

w h e r e  

0 I =  0 

0 . 3 3  class interval  i n  Rayleigh distribution function 
defining peak s t r e s s e s  in d i s c r e t e  amplitude loading 
t e s t s  

number  of cycles  to successively grow c r a c k  f r o m  
p =  0 to 8=  pi to 8 = f e t c . ,  under  constant 

amplitude,  sinusoidal loading. 
j 
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Table D2 

I 

Experimental  Fat igue 
Life under  Random Fat igue Life 
Noise ( cyc le s )  ( cyc le s )  

Reference 26 Table  D1 

P r e dic  t e  d 

RMS 
0 

~~ 

11, 260 psi  2 , 0 2 0 , 0 0 0  
1 ,380 ,  000 
2 ,490,  000 

850, 000 
1 ,110 ,000  
7 ,890 ,000  
3 , 4 1 0 , 0 0 0  

2 , 7 3 0 , 0 0 0  = avg. 7 

predicted 
Rat io  experimental  = 0 . 9 6  to 2. 07 

2, 630, 000 

5,  660, 000 
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T o  check the validity of the above ana lys i s ,  the next objective should be to  

conduct a random cyclic load t e s t .  During the t e s t ,  m e a s u r e m e n t s  a r e  to 

b e  taken of the growth of the c r a c k  wherever  i t  m a y  occur  in the sample .  

Hypothetical  r e s u l t s  a r e  shown in F i g u r e  DZ. It  should be noted that this 

technique m a y  r evea l  the  nonexistence of a single s t r e s s -p roduc ing  damage  
a t  a r a t e  equivalent t o  tha t  m e a s u r e d  under  random loading. 

prev ious ly  accepted be l ie fs .  

equivalent damaging s t r e s s  level did ex is t  has been  made  i n  the pas t  because 

of the lack of exper imenta l  proof. 

This  cont rad ic t s  

I t  i s  r ea l i zed  that the assumpt ion  that a n  

Additional exper iments  a r e  necessa ry .  Encouraging r e s u l t s  f r o m  such p r o -  

g r a m s  will indicate that a s e r i e s  of l ess  costly d i s c r e t e  t e s t s  can  be used to 

p red ic t  behavior of s t r u c t u r e s  subjected to random loads.  

. 

91 



. Approach 

An acceptab le  approach  for  the evaluation of safe - s t ruc tu re  by ana lys i s  and 

t e s t  which has  been used in  the pas t  i s  as  follows: 

1. Determine  the f r a c t u r e  envelope of the m a t e r i a l s  of cons t ruc t ion .  
This  can  be p re sen ted  a s  a var ia t ion in the s t rength  of the m a t e r i a l  
posses s ing  va r ious  flaw s i zes .  The envelope can be  obtained f r o m  
uniaxial o r  mult iaxial  load t e s t s ,  whichever  is appropr ia te .  

2. If the s t r u c t u r e  to be evaluated i s  ex t r eme ly  l a r g e ,  and necess i t a t e s  
a cos t ly  t e s t  p r o g r a m ,  then sma l l e r  t e s t  a r t i c l e s  may be used.  S e m i -  
empi r i ca l  equations a r e  available for  calculating the behavior  of l a r g e  
s t r u c t u r e  f r o m  the r e s u l t s  of sma l l  coupons.  F o r m u l a s  a r e  a l s o  
avai lable  fo r  predict ing the behavior under  biaxial loads f r o m  the 
r e su l t s  of uniaxial load t e s t s .  
demons t r a t e  the s u c c e s s  of the  analyt ical  methods and show c lose  
ag reemen t  between experimental  and analyt ical  r e su l t s .  
shows good ag reemen t  between predic ted  and ac tua l  f r a c t u r e  s t r eng ths  
of flawed and s m a l l  p r e s s u r e  v e s s e l s  f r o m  the r e s u l t s  of s imple  
uniaxially loaded panels. 
a 260-in. -d i ame te r  p r e s s u r e  ves se l  which has  been predic ted  f r o m  
the r e s u l t s  of 12-in. wide uniaxially ruptured  panels .  

The  next s tep  in evaluating a f r ac tu re - sa fe  design is  the d e t e r m i n a -  
tion of the s t ruc tu ra l  re inforcements  and the a s soc ia t ed  reduct ions  
in  s t r e s s  leve ls  a t  the re inforcement  that will a r r e s t  the fa i l - sa fe  
f r a c t u r e .  F igu re  E l  shows some ac tua l  exper ience  i n  v a r i o u s  
s t r u c t u r e s .  The ex is tence  of th ree  r eg ions  should be noted. In the 
f i r s t  reg ion ,  the s t r e s s e s  are unnecessar i ly  low and the c r a c k s  and 
f l aws  a r e  nonpropagating. 
design.  The middle region is acceptable ,  and within this boundary,  
c r a c k s  may  develop into rap id  f r a c t u r e  but the f r a c t u r e  is  control led 
and a r r e s t e d .  
working s t r e s s  and the s t ruc tu ra l  re inforcement .  
is not acceptable  for des ign ,  since f r a c t u r e  arrest is irr.possiS!c. 
An a l t e rna te  means  of depicting the da t a  of F i g u r e  E l  is shown in 
F i g u r e  E2. In this graph ,  the var ia t ion i n  res idua l  s t rength  with 
f law s i z e  is shown as a function of s t ruc tu ra l  re inforcement .  I t  
should be noted that higher  allowable working s t r e s s e s  can  be used  
with g r e a t e r  amounts  of re inforcement .  

F i g u r e s  C5 and C6 of Appendix C 

F i g u r e  C 5  

Figure  C6 shows the f r a c t u r e  envelope fo r  

3.  

This  region r e s u l t s  in  a n  overweight  

The control  of the f r a c t u r e  is a function of the 
The upper  reg ion  

4. A final ana lys i s  for  the p rope r  choice of ductile m a t e r i a l s  and 
a t t achmen t s  is requi red .  In addition, a tradeoff study should be 
m a d e  by compar ing  the weights of s t ruc tu ra l ly  re inforced  panels  as a 
funct ion of t h e i r  design working s t r e s s e s .  The r e s u l t s  of such  a 
study can  be depicted as shown i n  F i g u r e  E3. 
op t imum des ign  weight i s  plotted as a function of s t r u c t u r a l  
re inforcement .  

In the f igu re ,  the 
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APPENDIX E 

FRACTURE -SAFE DESIGN O F  SPACECRAFT STRUCTURES 

(SPACE - CABIN RELIABILITY) 
- -- 

Statement  of P r o b l e m  

Inadvertent damage to spacec ra f t  s t r u c t u r e  can  occur  during the operation of 

a vehicle .  

(1) meteoro id  penetration (point of impact  o r  d i s p e r s e d  through shield),  ( 2 )  un- 

detected flaws and c r a c k s  during fabrication, ( 3 )  components flung f r o m  

runaway ( in te rna l )  machinery ,  (4)  minor  col l is ions,  (5)  fatigue c r a c k s  

generated f r o m  high-frequency loading and high s t r e s s e s  during the launch 

phase  of flight, 

(7)  a c t s  of demented p a s s e n g e r s  and accidental  damage ,  

effects of blast  loads.  

The damage can c o m e  f r o m  a va r i e ty  of c a u s e s  such as: 

(6)  m a t e r i a l  degradat ion in  the space environment  (long - t ime) ,  

(8)  damage f r o m  the 

Init ial  damage i n c u r r e d  through any of t hese  c a u s e s  can  promote  explosive 

decompress ion  and complete  loss of a highly s t r e s s e d  and p r e s s u r i z e d  

vehicle.  

t rol led by the p r o p e r  choice of working s t r e s s e s  in combination with sufficient 

s t r u c t u r a l  r e in fo rcemen t .  The importance of vehicle reusabi l i ty ,  and r e  - 
t r i eva l  of personnel ,  equipment,  and da ta  necess i t a t e s  the solution to th i s  

problem through improved des ign .  

However, the extent of damage  o r  f r a c t u r e  can  be par t ia l ly  con-  

Cur r en t  Exper ience  

The  c u r r e n t  analysis  and testing p r o c e d u r e s  used to define the f r a c t u r e  

s t r eng th  of flawed s t r u c t u r e  a r e  adequate f o r  design p u r p o s e s .  

now take into account the effect  of biaxial loads on s t r u c t u r e .  

the s t r eng th  of s t r u c t u r e  often w a s  d e t e r m i n e d  d i r ec t ly  f r o m  the r e s u l t s  of 

uniaxial load t e s t s  which w e r e  adequate.  

biaxial  o r  multiaxial loads a r e  far m o r e  s e v e r e  fo r  the c a s e  of c racked  

The  methods 

In the p a s t ,  

Now, i t  has  been demonst ra ted  that 

s t r u c t u r e .  The successful  designs p roduced ,  however ,  w e r e  in 

a i r c r a f t  s t ruc tu re .  The application of the p r e s e n t  design methods to a 

welded spacecraf t  p r e s s u r e  v e s s e l s  will  r e q u i r e  some additional inves 

although a c a r r y o v e r  of pas t  knowledge and experience will  be helpful. 

1 

igation, 
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OPTIMUM WEIGHT VS. STRUCTURAL REINFORCEMENT 
FOR FRACTURE-SAFE DESIGN 
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I t  would a p p e a r ,  however ,  that the optimum f r a c t u r e - s a f e  design f o r  space - 
c r a f t  s t r u c t u r e  would be highly s t r e s s e d  skins  and closely spaced s t r u c t u r a l  

r e in fo rcemen t s .  i n  

F i g u r e  E3, i t  should be noted that the optimum design weight s t r u c t u r e  fo r  

a f r a c t u r e - s a f e  design does not p o s s e s s  the optimum life. 

fa t igue l i f e  is an important  consideration f o r  a given design,  then a heav ie r  

s t r u c t u r e  wil l  be r equ i r ed .  

though a r r e s t e d ,  may be another design consideration. F o r  th i s  c a s e ,  a n  

a l t e r n a t e  off-optimum design weight will have to be chosen.  

Fat igue life i s  a n  additional p a r a x e t e r  to be checked. 

If i n c r e a s e d  

The  concept of an allowable flaw s i z e ,  even 
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Recommendat ions for  F u t u r e  R e s e a r c h  . 
I t  h a s  been mentioned previously that the design of s a f e - s t r u c t u r e  has  been 

m o s t  successful  in the a i r c r a f t  f ield.  

provided the mechanisrn fo r  f r a c t u r e  a r r e s t  a r e  shown as I tem A and B in 

F i g u r e  E4. 

C - F  ( F i g u r e  E4).  

will  provide some degree  of f r a c t u r e  a r r e s t .  

area of re inforcement  and i t s  a s soc ia t ed  reduction in s t r e s s  level a t  the 

reinforcement  in o r d e r  to a r r e s t  f r a c t u r e ,  will have to be empi r i ca l ly  

de t e rmined .  

The s t r u c t u r a l  r e in fo rcemen t s  that have 

No experience is available for  the few s a m p l e s  shown as  I t e m  

However,  i t  is believed that each of these configurat ions 

T h e  anioant of c r o s s - s e c t i o n a l  

M.22495 
STRUCTURAL REINFORCEMENTS 
PROVIDING FRACTURE ARREST 

s L T  - STRINGER 

‘TIG FUSION SPOTWELD 

Figure E 4  
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APPENDIX F 

VARIABILITY O F  FATIGUE CHARACTER ISTICS 

' 

i 

The fatigue p rope r ty  of a me ta l  o r  a s t ruc tu re  i s  not a n  absolute  mechanica l  

p r o p e r t y ,  I t  h a s  no fixed value and can  be a l te red  dras t ica l ly  by s m a l l  
changes in one of the many va r i ab le s  producing the phenomenon. 

the calculat ion of an accu ra t e  predict ion for  the t ime-of -occurrence  of 

fatigue ex t r eme ly  difficult and often quest ionable .  

It is  genera l ly  recognized that a l a rge  variabil i ty o c c u r s  in  the t e s t  r e s u l t s  
of even the m o s t  careful ly  control led r e s e a r c h  o r  s t r u c t u r a l  development 

fatigue r e s e a r c h  p r o g r a m s .  However ,  i t  is  not the intent of this sect ion to 

d i scuss  the mechan i sms  by which var ious  p a r a m e t e r s  quantitatively affect  

fatigue life variabil i ty.  

concerning typical  t r ends  in fatigue-life s ca t t e r .  

de te rmined  f r o m  l abora to ry  observa t ions  and is believed to  be of u s e  in 

This  makes  

1 
I 

I 
, 

Rather ,  the intent i s  to shed some  knowledge 

This  knowledge has been  

1 

~ guiding the des igner .  

The c h a r a c t e r i s t i c  fatigue behavior  of s t ruc tu re  is i l lus t ra ted  in  a qual i ta t ive 

manner  in  the following d i a g r a m s .  

F i g u r e  F1 shows the  l ife s c a t t e r  in fatigue a s  a function of s t r e s s  level.  

the  leve l  of stress in  a s t r u c t u r e  d iminishes ,  the var iab i l i ty  in the t ime  

r equ i r ed  to produce rupture  inc reases .  

s t r e s s  range  of the cycl ic  a l te rna t ion  in s t r e s s  diminishes .  

fatigue-life var iab i l i ty  d e c r e a s e s  as the  sever i ty  of the s t r e s s  concentrat ions 

in  a s t r u c t u r e  i n c r e a s e s .  

which a l s o  shows tha t  s eve re ly  notched m e m b e r s  p o s s e s s  l e s s  s c a t t e r  in  

l i fe  than unnotched m e m b e r s .  S imi l a r  cha rac t e r i s t i c s  are  evidenced in the 

phenomenon of fa t igue-crack growth. 

with cyc les  of s t ra in ing .  

For purposes  of s impl i f ica t ion ,  me ta l  fatigue may be cons idered  as a two- 

s tage  p r o c e s s .  The f i r s t  s t age ,  t e r m e d  a damage nucleation pe r iod ,  i s  d i f -  

f icult  to define in  engineer ing terminology but has  been observed  to be la rge ly  

r e spons ib l e  fo r  the s c a t t e r  in  fatigue r e s u l t s .  

A s  

The same  ru le  a l s o  appl ies  i f  the 

F u r t h e r m o r e ,  

These  d i f fe rences  a r e  depicted in  F i g u r e  F1, 

F i g u r e  F2 depicts  the  growth of c r a c k s  

The life var iab i l i ty  in the 
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second s tage,  t e r m e d  the c r a c k  propagation per iod,  i s  e a s i l y  rnonitored and 

i s  known to be relat ively s m a l l .  

s c a t t e r  in fatigue t e s t  r e s u l t s  i s  a s soc ia t ed  rnzinly with the incubation s tage 

o r  f i r s t  s tage of the fatigue phenomenon. 

concentrat ions have longer l i ves ,  longer damage nucleation pe r iods ,  s h o r t e r  

c r a c k  propagation pe r iods ,  and correspondingly g r e a t e r  var iabi l i ty  i n  life 

than s t r u c t u r e s  posses s ing  s e v e r e  s t r e s s  r a i s e r s .  Conver se ly ,  s eve re ly  

notched p a r t s  p o s s e s s  re la t ively s h o r t  damage incubation pe r iods ,  long c r a c k  

propagation p e r i o d s ,  and s m a l l  s c a t t e r  r e c o r d s ,  as h a s  been  shown i n  the 

r e s u l t s  of r ep l i ca t e  t e s t s .  

If the exper imenta l  da t a  i n  F i g u r e  F2 f o r  s t ruc tu re  posses s ing  high s t r e s s  

concentrat ions w e r e  replotted a s  the tinie required to grow a c r a c k  f r o m  i t s  

f i r s t  detectable  length, the var iahi l i ty  in life i s  f u r t h e r  reduced.  

F i g u r e  F 2  have been normalized and replotted in F i g u r e  F3. A prac t i ca l  

value f o r  thelengthof  c r a c k t h a t  c a n b e  detectedin s e r v i c e  is 1 /8  in. to 1 / 4 i n .  

T h e r e f o r e ,  it c an  be concluded that the 

S t ruc tu res  re la t ively f r e e  of s t r e s s  

The da ta  in 
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In the figures, this is identified as  I,, which is witnessed at n, cycles. 

These 

A 
normal scatter of 3:l in overall fatigue life may be reduced to a 10% scatter 
i n  behavior, if only the crack propagation period is considered. 
characteristics suggest that separate probability analyses should be made for 
each stage of the fatigue damaging process.  
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I CATASTROPHIC FA1 LURE 

Figure G 1  

functions of the or ientat ion of the p r inc ipa l  s t ra ining to the roll ing 
d i rec t ion  of the m a t e r i a l .  These d i f fe rences  should be de t e rmined  
fo r  mos t  me ta l s  if safe design working s t r e s s e s  a r e  to be defined. 
Some p re l imina ry  r e s u l t s  a r e  desc r ibed  in  Appendix C .  

Fat igue Life a s  a Funct ion of Environment  
More invest igat ions a r e  needed to e x p l o r e t h e  t ime -dependent c h a r  - 
a c t e r i s t i c s  of fatigue and f r a c t u r e  phenomena. 
ts deterililrie the e f iec ts  of i ne r t  g a s e s ,  ozone, co r ros ive  g a s e s ,  
liquid m e t a l s ,  vacuum,  i r rad ia t ion ,  and combinations of these a t  
e levated,  high, and cryogenic t empera tu res .  Long-t ime a s  well a s  
sho r t - t ime  exposure  pe r iods  should a l so  be invest igated.  

Tests  a-re r e c p i r e d  

Fa i l - sa fe  and F rac tu re -Sa fe  Design 
The leak-before- rupture  design philosophy used in  a i r c r a f t  m a y  be 
appropr i a t e  f o r  s o m e  spacecraf t  s t r u c t u r e s  but not for  o thers .  
Additional s tud ies  a r e  needed in this f ield to define those vehicle  
ca t egor i e s  which a r e  and a r e  not appl icable .  

I t  i s  recommended that future  work be d i r ec t ed  to analyt ical  and 
exper imenta l  p r o g r a m s  defining the s t ruc tu ra l  stiffening r equ i r e  - 
ments  and s t r e s s  field gradients  for  a r r e s t i n g  f r ac tu re  a f t e r  i ts  
initiation. This  should be done for  integral ly  stiffened s t r u c t u r e  
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APPENDIX G 

SOME RECOMMENDED AREAS FOR RESEARCH IN 

FATIGUE AND FRACTURE O F  METALS 

The pr incipal  a r e a s  in which knowledge of fatigue and f r a c t u r e  c h a r a c t e r i s t i c s  

of m e t a l s  and s t ruc tu res  i s  l imited a r e  l isted below. T h e s e  a r e a s  will have 

to be r e s e a r c h e d  before the m o s t  serviceable  fatigue- and f r a c t u r e  -safe d e -  

sign c r i t e r i a  can b e  formulated f o r  n e a r  -future a i r c r a f t  and space -vehicle 

s t r u c t u r e s .  

indicates  that the situation will  not change appreciably in the coming y e a r .  

However,  the need for this knowledge is so p r e s s i n g  that  i t  s e e m s  appropr i a t e  

to per iodical ly  review and update the l i s t  of m a t e r i a l  r e s e a r c h  p r o g r a m s  that 

should be undertaken. Without such r ev iews ,  the independent r e s e a r c h e r s  

have l i t t le guidance in  selecting a r e a s  where  the i r  pa r t i cu la r  ta lents  can b e s t  

be applied. 

da t a  on c u r r e n t  m a t e r i a l s  and new da ta  on some m e t a l s  that o the rwise  would 

r e m a i n  unexploited. 

The s t a tus  of p r o g r a m s  now underway to study these a r e a s  

I t  is hoped that this approach will  r e s u l t  i n  m o r e  useful  design 

o Rate  of Flaw Growth in  Monocoque P r e s s u r e  V e s s e l s  and Tubing 
Data on the r a t e  of c r a c k  growth in  m e t a l s  a r e  predominant ly  f o r  
c a s e s  of uniaxial  cycl ic  s t ra ining.  T h e s e  da t a  a r e  inappropriate  
fo r  the design of multiaxially loaded s t r u c t u r e .  More p r o g r a m s  
a r e  needed to obtain mult iaxial  information,  s ince m o s t  s t r u c t u r e s  
are subjected to complex s t ra ining.  

--- 

F i g u r e  G1 graphically depicts  one approach  to m e e t  t hese  needs.  

example,  many s t r u c t u r e s  a r e  subjected to init ial  proofing p r o g r a m s .  T h e  

number of proof loadings (n,) should be accounted for  i n  the des ign .  In 

addition, the anticipated operat ional  cyc le s  m u s t  be cons ide red .  The i r  

continued effects ( a t  

s t r e s s e s .  

of a working s t r e s s  to m e e t  the r e q u i r e d  useful  life of the s t r u c t u r e .  

F o r  

x n o )  can then be used t o  e s t ab l i sh  safe design working 

The m a r g i n  f o r  safety in th i s  c a s e  is based  on the p r o p e r  select ion 

Fatigue Life and C r a c k  Growth in Metals  as a Funct ion of Anisotropy 
L a r g e  d i f f e rences  in r e s idua l  s t r eng th  and crack-growth  r a t e s  have 
been noted in the few observat ions made  of t hese  c h a r a c t e r i s t i c s  as 
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c 
0 Out-of -Phase  Cycl ic  Loading 

Many s t ruc tu res  a r e  subjected to a var ie ty  of cycric loading pa t te rns  
f r o m  va r ious  load sources .  
va r ious  loading s o u r c e s  a r e  seldom about the s a m e  s t r e s s  axes. 
The accumulat ion of damage  during cycl ic  s t ra ining consequently 
would be  different  for  each  loading source  
probably h a s  an appreciable  effect on the resu l tan t  fatigue life of a 
s t ruc tu re .  
loaded s t ruc tu re ,  no investigations yet have been at tempted.  

The straining d i rec t ions  within the 

Th i s  accumulat ion 

Although these  a r e  r ea l i s t i c  conditions fo r  cyclically 

0 Fracture C h a r a c t e r i s t i c s  under Hypervelocity Impact  

Knowledge of the effect  of f l aws  genera ted  by hypervelocity impact  
and penetration on b r i t t l e  m a t e r i a l s  is r equ i r ed  fo r  establishing 
re la ted  design data. 
f r ac tu re  -mechanics  theor ies  will  apply to  the instantaneous stress 
s t a t e  at a flaw produced in this manner .  

It h a s  not been demonst ra ted  that n o r m a l  

F laws  genera ted  by meteoro id  impact  o r  penetration can  be  nucleii  
f o r  fatigue c r a c k  growth. This subject  a l s o  r e q u i r e s  investigation. 
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(F igu re  E4 - G2),  which f o r  va r ious  r e a s o n s  is a promising candi- 
da t e  fo r  both internal ly  p r e s s u r i z e d  space  cabins  and external ly  
p r e s s u r i z e d  submers ib le  s t r u c t u r e s .  

0 Safe-Life and C r a c k - F r e e  Design 
Although t h e  philosophy of safe  -life design h a s  not proved too 
successful  in a i r c r a f t ,  t he re  may be some space -vehicle s t r u c t u r e  
f o r  which i t  i s  appropriate .  
safety of s t r u c t u r e s  that have no tolerance fo r  c r a c k s  ( c r a c k - f r e e  
s t r u c t u r e )  will probably demand minimally s t r e s s e d ,  g r e a t e r  weight 
components in s o m e  a r e a s .  P r o g r a m s  a re  needed to define t h r e s h -  
old levels  of working s t r e s s  where no c r a c k s  a r e  generated through- 
out the useful  l ife of the s t ruc tu re .  

Design requi rements  for  i nc reased  

Scale  Effects  and Effect of Curva ture  -____- 
Most exper iments  have been conducted on relat ively s m a l l ,  f lat  t e s t  
panels.  
of l a rge  vehicles  f r o m  the t e s t  r e s u l t s  of s m a l l e r  sect ions.  
the complex s t r e s s  s t a t e s  caused when curved panels  a r e  loaded a r e  
not adequately accounted for  in a n a l y s i s ,  
r equ i r ed  to es tabl ish scaling laws and to predict  the behavior of 
flawed p r e s s u r e  v e s s e l s  ( cu rved  pane l s ) .  

No adequate scaling laws exis t  for the predict ion of behavior 
S imi l a r ly ,  

More investigations a r e  
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